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Evolution 

• Evolution is the change in the inherited traits of 
a population from one generation to the next. 

 

 

 

 

 

 

 

• Natural selection leading to better and better 
species  

 

 

 

 

 

 

 

 

 



Evolution – Fundamental Laws 

• Survival of the fittest. 

• Change in species is due to change in genes 
over reproduction or/and due to mutation. 

 

 

 

 

 

 
An Example showing the concept of survival of the fittest and reproduction over 

generations. 



What is Evolutionary Computation? 

A technique borrowed from the theory of 
biological evolution that is used to create 
optimization procedures or methodologies, 
usually implemented on computers, that are 
used to solve problems. 



 Natural Selection 

• Limited number of resources 

• Competition results in struggle for existence 

• Success depends on fitness -- 

• fitness of an individual:  how well-adapted an 
individual is to their environment.  This is 
determined by their genes (blueprints for their 
physical and other characteristics). 

• Successful individuals are able to reproduce and 
pass on their genes 



When changes occur ... 

• Previously “fit” (well-adapted) individuals will no 
longer be best-suited for their environment 

 

• Some members of the population will have genes that 
confer different characteristics than “the norm”.  
Some of these characteristics can make them more 
“fit” in the changing environment. 



Genetic Change in Individuals 

• Mutation in genes 

– may be due to various sources (e.g. UV rays, 
chemicals, etc.) 

Start: 

1001001001001001001001 

 
Location of Mutation After Mutation: 

1001000001001001001001 



Genetic Change in Individuals  

• Recombination (Crossover) 

– occurs during reproduction -- sections of genetic 
material exchanged between two chromosomes 



Recombination (Crossover) 

Image from http://esg-www.mit.edu:8001/bio/mg/meiosis.html 



The Nature of Computational Problems 

• Require search through many possibilities to find a 
solution 

• (e.g. search through sets of rules for one set that best predicts the 
ups and downs of the financial markets) 

– Search space too big -- search won’t return within our 
lifetimes 

• Require algorithm to be adaptive or to construct 
original solution 

• (e.g. interfaces that must adapt to idiosyncrasies of different users) 

 



Why Evolution Proves to be a Good Model for 
Solving these Types of Problems 

• Evolution is a method of searching for an (almost) 
optimal solution 

• Possibilities -- all individuals 

• Best solution -- the most “fit” or well-adapted individual 

• Evolution is a parallel process 
• Testing and changing of numerous species and individuals occur at 

the same time (or, in parallel) 

• Evolution can be seen as a method that designs new 
(original) solutions to a changing environment 



Evolutionary Computing 

• Genetic Algorithms 

– invented by John Holland (University of Michigan) 
in the 1960’s 

• Evolution Strategies 

– invented by Ingo Rechenberg (Technical University 
Berlin) in the 1960’s 

• Started out as individual developments, but 
converged in the later years 



Search Methods 
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Genetic Algorithm (GA) 
 

• Search-based optimization technique based on the principles of 
Genetics and Natural Selection.  
 

• It is frequently used to find optimal or near-optimal solutions to 
difficult problems which otherwise would take a lifetime to solve.  
 

• It is frequently used to solve optimization problems, in research, 
and in machine learning. 
 

• GAs are a subset of a much larger branch of computation known 
as Evolutionary Computation. 
 

• GAs were developed by John Holland and his students and 
colleagues at the University of Michigan, most notably David E. 
Goldberg and has since been tried on various optimization 
problems with a high degree of success. 



• In GAs, we have a pool or a population of possible solutions to 
the given problem.  
 

• These solutions then undergo recombination and mutation 
(like in natural genetics), producing new children, and the 
process is repeated over various generations.  
 

• Each individual (or candidate solution) is assigned a fitness 
value (based on its objective function value) and the fitter 
individuals are given a higher chance to mate and yield more 
“fitter” individuals. This is in line with the Darwinian Theory of 
“Survival of the Fittest”. 



• In this way we keep “evolving” better individuals or solutions 
over generations, till we reach a stopping criterion. 
 

• Genetic Algorithms are sufficiently randomized in nature, but 
they perform much better than random local search (in which 
we just try various random solutions, keeping track of the best 
so far), as they exploit historical information as well. 



Advantages of GAs 
 

• Does not require any derivative information (which may not be available 
for many real-world problems). 
 

• Is faster and more efficient as compared to the traditional methods. 
 

• Has very good parallel capabilities. 
 

• Optimizes both continuous and discrete functions and also multi-
objective problems. 
 

• Provides a list of “good” solutions and not just a single solution. 
 

• Always gets an answer to the problem, which gets better over the time. 
 

• Useful when the search space is very large and there are a large number 
of parameters involved. 



Limitations of GAs 
 

• GAs are not suited for all problems, especially problems which 
are simple and for which derivative information is available. 
 

• Fitness value is calculated repeatedly which might be 
computationally expensive for some problems. 
 

• Being stochastic, there are no guarantees on the optimality or 
the quality of the solution. 
 

• If not implemented properly, the GA may not converge to the 
optimal solution. 



Genetic Algorithm Flow Chart 



Why GA 
 
• There is a large set of problems, which are NP-Hard. What 

this essentially means is that, even the most powerful 
computing systems take a very long time (even years!) to 
solve that problem. In such a scenario, GAs prove to be an 
efficient tool to provide usable near-optimal solutions in a 
short amount of time. 
 

• Traditional calculus based methods work by starting at a 
random point and by moving in the direction of the gradient, 
till we reach the top of the hill. This technique is efficient and 
works very well for unimodal objective functions like the cost 
function in linear regression.  
 

• But, in most real-world situations, we have a very complex 
problem called as landscapes, which are multimodal in nature. 
For such problems gradient methods does not provide solution 
as they get stuck at the local optima as shown in the figure. 

 





• Getting a Good Solution Fast 
 

• Some difficult problems like the Travelling Salesperson Problem 
(TSP), have real-world applications like path finding. Suppose, you 
are moving on a road and using your GPS Navigation system. It 
takes a few minutes (or even a few hours) to compute the 
“optimal” path from the source to destination. Delay in such real 
world applications is not acceptable and therefore a “good-
enough” solution, which is delivered “fast” is what is required. 



Basic Terminology 
 
Population − It is a subset of all the possible (encoded) solutions to 
the given problem.  
Chromosomes − A chromosome is one such solution to the given 
problem. 
Gene − A gene is one element position of a chromosome. 
Allele − It is the value a gene takes for a particular chromosome. 
 



Genotype − Genotype is the population in the computation space. 
In the computation space, the solutions are represented in a way 
which can be easily understood and manipulated using a computing 
system. 
 
Phenotype − Phenotype is the population in the actual real world 
solution space in which solutions are represented in a way they are 
represented in real world situations. 
 
Decoding and Encoding − For simple problems, the phenotype and 
genotype spaces are the same. However, in most of the cases, the 
phenotype and genotype spaces are different. Decoding is a process 
of transforming a solution from the genotype to the phenotype 
space, while encoding is a process of transforming from the 
phenotype to genotype space. Decoding should be fast as it is 
carried out repeatedly in a GA during the fitness value calculation. 



Genotype space can be represented as a binary string of length n 
(where n is the number of items).  
A 0 at position x represents that xth item is picked while a 1 
represents the reverse.  
This is a case where genotype and phenotype spaces are different. 



 
Fitness Function − A fitness function simply defined is a function 
which takes the solution as input and produces the suitability of 
the solution as the output. In some cases, the fitness function and 
the objective function may be the same, while in others it might 
be different based on the problem. 
 
Genetic Operators − These alter the genetic composition of the 
offspring. These include crossover, mutation, selection, etc. 



A Combination Operator for Expressions 



Basic Structure 



Individual Encoding/ Representation  

 
– Bit strings                          (0101 ... 1100) 

– Real numbers                     (43.2 -33.1 ... 0.0 89.2)  

– Permutations of element     (E11 E3 E7 ... E1 E15) 

– Lists of rules                       (R1 R2 R3 ... R22 R23) 

– Program elements               (genetic programming) 

– ... any data structure ... 



Representation 
 

Representation is very important in GA. It has been observed that 
improper representation can lead to poor performance of the GA. 
 
Binary Representation 
• This is one of the simplest and most widely used representation in GAs. 

In this type of representation the genotype consists of bit strings. 
 

• For Boolean decision variables – yes or no, the binary representation is 
natural.  

• For other problems, specifically those dealing with numbers, we can 
represent the numbers with their binary representation. The problem 
with this is that different bits have different significance and therefore 
mutation and crossover operators can have undesired consequences.  

• This can be resolved to some extent by using Gray Coding, as a change 
in one bit does not have a massive effect on the solution. 



Real Valued Representation 
• For problems where we want to define the genes using 

continuous rather than discrete variables, the real valued 
representation is the most natural. The precision of these real 
valued or floating point numbers is however limited to the 
computer. 
 

Integer Representation 
• For discrete valued genes, we cannot always limit the solution 

space to binary ‘yes’ or ‘no’. For example, if we want to encode 
the four distances – North, South, East and West, we can encode 
them as {0,1,2,3}. In such cases, integer representation is 
desirable. 
 



Permutation Representation 
• In many problems, the solution is represented by an order of 

elements. In such cases permutation representation is the most 
suited. 
 

• A classic example of this representation is the travelling 
salesman problem (TSP). In this the salesman has to take a tour 
of all the cities, visiting each city exactly once and come back to 
the starting city. The total distance of the tour has to be 
minimized. The solution to this TSP is naturally an ordering or 
permutation of all the cities and therefore using a permutation 
representation makes sense for this problem. 
 



Population 
 

Population is a subset of solutions in the current generation. It can 
also be defined as a set of chromosomes.  
 
The diversity of the population should be maintained otherwise it 
might lead to premature convergence. 
 
The population size should not be kept very large as it can cause a 
GA to slow down, while a smaller population might not be enough 
for a good mating pool. Therefore, an optimal population size needs 
to be decided by trial and error. 
 
The population is usually defined as a two dimensional array of – 
size population, size x, chromosome size. 



Population Initialization 
 
• There are two primary methods to initialize a population in a GA. 

Random Initialization − Populate the initial population with 
completely random solutions. 

• Heuristic initialization − Populate the initial population using a 
known heuristic for the problem. 

 
• It has been observed that the entire population should not be 

initialized using a heuristic, as it can result in the population 
having similar solutions and very little diversity.  
 

• It has been experimentally observed that the random solutions 
are the ones to drive the population to optimality.  
 

• It has also been observed that heuristic initialization in some 
cases, only effects the initial fitness of the population, but in the 
end, it is the diversity of the solutions which lead to optimality. 



Population Models 
 
There are two population models widely in use − 
 
• Steady State 
• In steady state GA, we generate one or two off-springs in each 

iteration and they replace one or two individuals from the 
population. A steady state GA is also known as Incremental GA. 
 

• Generational 
• In a generational model, we generate ‘n’ off-springs, where n is 

the population size, and the entire population is replaced by the 
new one at the end of the iteration. 



Fitness Function 
 
• The fitness function simply defined is a function which takes a 

candidate solution to the problem as input and produces as 
output how “fit” our how “good” the solution is with respect to 
the problem in consideration. 
 

A fitness function should possess the following characteristics − 
• The fitness function should be sufficiently fast to compute. 
• It must quantitatively measure how fit a given solution is or how 

fit individuals can be produced from the given solution. 
• In some cases, calculating the fitness function directly might not 

be possible due to the inherent complexities of the problem at 
hand. In such cases, we do fitness approximation to suit our 
needs. 

 



Selection 
• Parent Selection is the process of selecting parents which mate 

and recombine to create off-springs for the next generation.  
• Parent selection is very crucial to the convergence rate of the 

GA as good parents drive individuals to a better and fitter 
solutions. 

• However, care should be taken to prevent one extremely fit 
solution from taking over the entire population in a few 
generations, as this leads to the solutions being close to one 
another in the solution space thereby leading to a loss of 
diversity.  

• Maintaining good diversity in the population is extremely 
crucial for the success of a GA.  

• This taking up of the entire population by one extremely fit 
solution is known as premature convergence and is an 
undesirable condition in a GA. 



Fitness Proportionate Selection 
• Fitness Proportionate Selection is one of the most popular ways 

of parent selection.  
• In this every individual can become a parent with a probability 

which is proportional to its fitness. Therefore, fitter individuals 
have a higher chance of mating and propagating their features 
to the next generation.  

• Therefore, such a selection strategy applies a selection pressure 
to the more fit individuals in the population, evolving better 
individuals over time. 

• Consider a circular wheel. The wheel is divided into n pies, 
where n is the number of individuals in the population. Each 
individual gets a portion of the circle which is proportional to its 
fitness value. 



Roulette Wheel Selection 
• In a roulette wheel selection, the circular wheel is divided as 

described before. A fixed point is chosen on the wheel 
circumference as shown and the wheel is rotated. The region of 
the wheel which comes in front of the fixed point is chosen as 
the parent.  

• For the second parent, the same process is repeated. 
 



• It is clear that a fitter individual has a greater area on the wheel 
and therefore a greater chance of landing in front of the fixed 
point when the wheel is rotated.  

• Therefore, the probability of choosing an individual depends 
directly on its fitness. 
 

Implementation − 
• Calculate S = the sum of a fitness. 
• Generate a random number between 0 and S. 
• Starting from the top of the population, keep adding the fitness 

to the partial sum P, till P<S. 
• The individual for which P exceeds S is the chosen individual. 



Roulette wheel selection  

 

 

 

 

 

 

 

Each string is formed by concatenating four substrings representing 

variables a, b, c and d. Length of each string is taken as four bits  

Consider a population containing four strings shown  



Parent Selection: Roulette wheel selection 

• These probabilities are represented on a pie chart 

• Then four numbers are randomly generated between 1 and 100 

• The likeliness of these numbers falling in the region of 

candidate 2 might be once, whereas for candidate 4 it might be 

twice and candidate 1 more than once and for candidate 3 it 

may not fall at all 

• Thus, the strings are chosen to form the parents of the next 

generation 

• The main disadvantage of this method is when the fitnesses 

differ very much 

• For example, if the best chromosome fitness is 90% of the 

entire roulette wheel then the other chromosomes will have 

very few chances to be selected 



Stochastic Universal Sampling (SUS) 
 
• Stochastic Universal Sampling is quite similar to Roulette wheel 

selection, however instead of having just one fixed point, we 
have multiple fixed points as shown in the following image.  

• Therefore, all the parents are chosen in just one spin of the 
wheel. Also, such a setup encourages the highly fit individuals 
to be chosen at least once. 

• It is to be noted that fitness proportionate selection methods 
don’t work for cases where the fitness can take a negative 
value. 



Tournament Selection 
• In K-Way tournament selection, we select K individuals from the 

population at random and select the best out of these to 
become a parent.  

• The same process is repeated for selecting the next parent.  
• Tournament Selection is also extremely popular in literature as it 

can even work with negative fitness values. 



Rank Selection 
• Rank Selection also works with negative fitness values and is 

mostly used when the individuals in the population have very 
close fitness values (this happens usually at the end of the run). 

• This leads to each individual having an almost equal share of the 
pie and hence each individual no matter how fit relative to each 
other has an approximately same probability of getting selected 
as a parent.  

• This in turn leads to a loss in the selection pressure towards 
fitter individuals, making the GA to make poor parent selections 
in such situations. 



Chromosome Fitness Value Rank 
A 8.1 1 
B 8.0 4 
C 8.05 2 
D 7.95 6 
E 8.02 3 
F 7.99 5 

• The concept of a fitness value is removed while selecting a parent. 
However, every individual in the population is ranked according to their 
fitness.  

• The selection of the parents depends on the rank of each individual and 
not the fitness.  

• The higher ranked individuals are preferred more than the lower ranked 
ones. 

Random Selection 
• In this strategy parents are randomly selected from the existing population.  
• There is no selection pressure towards fitter individuals and therefore this 

strategy is usually avoided. 



CROSSOVER 
 
• The crossover operator is analogous to reproduction and biological 

crossover.  
• In this more than one parent is selected and one or more off-

springs are produced using the genetic material of the parents.  
• Crossover is usually applied in a GA with a high probability  

 
Crossover Operators 
 
One Point Crossover 
• In this one-point crossover, a random crossover point is selected 

and the tails of its two parents are swapped to get new off-springs. 



Multi Point Crossover 
 

• Multi point crossover is a generalization of the one-point 
crossover wherein alternating segments are swapped to get 
new off-springs. 
 
 
 
 
 

Uniform Crossover 
• In a uniform crossover, the chromosome are not divided into 

segments, rather treated separately. 
• In this, we essentially flip a coin for each chromosome to decide 

whether or not it’ll be included in the off-spring.  
• We can also bias the coin to one parent, to have more genetic 

material in the child from that parent. 
 



Whole Arithmetic Recombination 
 
• This is commonly used for integer representations and works 

by taking the weighted average of the two parents by using 
the following formulae − 

• Child1 = α.x + (1-α).y 
• Child2 = (1-α).x + α.y 
• Obviously, if α = 0.5, then both the children will be identical as 

shown in the following image. 



Davis’ Order Crossover (OX1) 
• OX1 is used for permutation based crossovers with the intention 

of transmitting information about relative ordering to the off-
springs.  

• It works as follows − 
• Create two random crossover points in the parent and copy 

the segment between them from the first parent to the first 
offspring. 

• Now, starting from the second crossover point in the second 
parent, copy the remaining unused numbers from the second 
parent to the first child, wrapping around the list. 

• Repeat for the second child with the parent’s role reversed. 



There exist a lot of other crossovers like  
• Partially Mapped Crossover (PMX),  
• Order based crossover (OX2),  
• Shuffle Crossover,  
• Ring Crossover, etc. 



MUTATION 
  
• Mutation may be defined as a small random tweak in the 

chromosome, to get a new solution.  
• It is used to maintain and introduce diversity in the genetic 

population and is usually applied with a low probability – pm.  
• If the probability is very high, the GA gets reduced to a 

random search. 
• Mutation is the part of the GA which is related to the 

“exploration” of the search space. It has been observed that 
mutation is essential to the convergence of the GA while 
crossover is not. 



Mutation Operators 
In this section, we describe some of the most commonly used 
mutation operators. Like the crossover operators, this is not an 
exhaustive list and the GA designer might find a combination of 
these approaches or a problem-specific mutation operator more 
useful. 
Bit Flip Mutation 
In this bit flip mutation, we select one or more random bits and 
flip them. This is used for binary encoded GAs. 



Random Resetting 
• Random Resetting is an extension of the bit flip for the integer 

representation. In this, a random value from the set of 
permissible values is assigned to a randomly chosen gene. 

 
Swap Mutation 
• In swap mutation, we select two positions on the chromosome 

at random, and interchange the values. This is common in 
permutation based encodings. 



Scramble Mutation 
• Scramble mutation is also popular with permutation 

representations. In this, from the entire chromosome, a subset 
of genes is chosen and their values are scrambled or shuffled 
randomly. 

 
 
 
 
Inversion Mutation 
• In inversion mutation, we select a subset of genes like in 

scramble mutation, but instead of shuffling the subset, we 
merely invert the entire string in the subset. 

 



SURVIVOR SELECTION 
  
• The Survivor Selection Policy determines which individuals are 

to be kicked out and which are to be kept in the next 
generation.  

• It is crucial as it should ensure that the fitter individuals are 
not kicked out of the population, while at the same time 
diversity should be maintained in the population. 

• Some GAs employ Elitism. In simple terms, it means the 
current fittest member of the population is always propagated 
to the next generation. Therefore, under no circumstance can 
the fittest member of the current population be replaced. 

• The easiest policy is to kick random members out of the 
population, but such an approach frequently has convergence 
issues, therefore the following strategies are widely used. 



Age Based Selection 
• In Age-Based Selection, we don’t have a notion of a fitness.  
• In this, each individual is allowed in the population for a finite 

generation where it is allowed to reproduce, after that, it is 
kicked out of the population no matter how good its fitness is. 

• For instance, in the following example, the age is the number of 
generations for which the individual has been in the population. 
The oldest members of the population i.e. P4 and P7 are kicked 
out of the population and the ages of the rest of the members 
are incremented by one. 



Fitness Based Selection 
• In this fitness based selection, the children tend to replace the 

least fit individuals in the population. The selection of the least 
fit individuals may be done using a variation of any of the 
selection policies  such as tournament selection, fitness 
proportionate selection, etc. 

• For example, in the following image, the children replace the 
least fit individuals P1 and P10 of the population. It is to be 
noted that since P1 and P9 have the same fitness value, the 
decision to remove which individual from the population is 
arbitrary. 



TERMINATION 
  
• The termination condition of a Genetic Algorithm is important 

in determining when a GA run will end.  
 

• It has been observed that initially, the GA progresses very fast 
with better solutions coming in every few iterations, but this 
tends to saturate in the later stages where the improvements 
are very small.  
 

• We usually want a termination condition such that our solution 
is close to the optimal, at the end of the run. 

 



Usually, we keep one of the following termination conditions − 
• When there has been no improvement in the population for X iterations. 

 
• When we reach an absolute number of generations. 

 
• When the objective function value has reached a certain pre-defined value. 

 
• For example, in a genetic algorithm we keep a counter which keeps track of 

the generations for which there has been no improvement in the 
population. Initially, we set this counter to zero. Each time we don’t 
generate off-springs which are better than the individuals in the population, 
we increment the counter. 
 

• However, if the fitness any of the off-springs is better, then we reset the 
counter to zero. The algorithm terminates when the counter reaches a 
predetermined value. 
 

• Like other parameters of a GA, the termination condition is also highly 
problem specific and the user should try out various options to see what 
suits his particular problem the best. 



ADAPTION 
 

• Other models of lifetime adaptation – Lamarckian Model and 
Baldwinian Model also do exist.  
 

• It is to be noted that whichever model is the best, is open for 
debate and the results obtained by researchers show that the 
choice of lifetime adaptation is highly problem specific. 
 

• Often, we hybridize a GA with local search – like in Memetic 
Algorithms.  
 

• In such cases, one might choose do go with either Lamarckian or 
Baldwinian Model to decide what to do with individuals 
generated after the local search. 



Lamarckian Model 
 
• The Lamarckian Model essentially says that the traits which an 

individual acquires in his/her lifetime can be passed on to its 
offspring. It is named after French biologist Jean-Baptiste 
Lamarck. 
 

• Even though, natural biology has completely disregarded 
Lamarckism as we all know that only the information in the 
genotype can be transmitted.  
 

• However, from a computation view point, it has been shown that 
adopting the Lamarckian model gives good results for some of the 
problems. 
 

• In the Lamarckian model, a local search operator examines the 
neighborhood (acquiring new traits), and if a better chromosome 
is found, it becomes the offspring 



Baldwinian Model 
• The Baldwinian model is an intermediate idea named after James 

Mark Baldwin (1896).  
• In the Baldwin model, the chromosomes can encode a tendency 

of learning beneficial behaviors. This means, that unlike the 
Lamarckian model, we don’t transmit the acquired traits to the 
next generation, and neither do we completely ignore the 
acquired traits like in the Darwinian Model. 

• The Baldwin Model is in the middle of these two extremes, 
wherein the tendency of an individual to acquire certain traits is 
encoded rather than the traits themselves. 

• In this Baldwinian Model, a local search operator examines the 
neighborhood (acquiring new traits), and if a better chromosome 
is found, it only assigns the improved fitness to the chromosome 
and does not modify the chromosome itself. 

• The change in fitness signifies the chromosomes capability to 
“acquire the trait”, even though it is not passed directly to the 
future generations. 



Introduce problem-specific domain knowledge 
• It has been observed that the more problem-specific domain 

knowledge we incorporate into the GA; the better objective 
values we get.  

• Adding problem specific information can be done by either using 
problem specific crossover or mutation operators, custom 
representations, etc. 

• The following image shows Michalewicz’s (1990) view of the EA − 



Reduce Crowding 
• Crowding happens when a highly fit chromosome gets to 

reproduce a lot, and in a few generations, the entire 
population is filled with similar solutions having similar fitness. 

• This reduces diversity which is a very crucial element to ensure 
the success of a GA. There are numerous ways to limit 
crowding. Some of them are − 
• Mutation to introduce diversity. 
• Switching to rank selection and tournament selection 

which have more selection pressure than fitness 
proportionate selection for individuals with similar fitness. 

• Fitness Sharing − In this an individual’s fitness is reduced if 
the population already contains similar individuals. 



Hybridize GA with Local 
Search 
• Local search refers to 

checking the solutions 
in the neighborhood of 
a given solution to look 
for better objective 
values. 
 

• It may be sometimes 
useful to hybridize the 
GA with local search.  
 

• The image shows the 
various places in which 
local search can be 
introduced in a GA 



Tuning a GA 
• “Typical” tuning parameters for a small problem 

 
 
 
 
 
 

• Other concerns 
– population diversity 
– ranking policies 
– removal policies 
– role of random bias 

Population size: 50 – 100 

Children per generation: = population size 

Crossovers: 0 – 3 

Mutations: < 5% 

Generations: 20 – 20,000 



Initial population 



Select 



Crossover 



Another Crossover 



A mutation 



Another Mutation 



Old population + children 



New Population: Generation 2 



Generation 3 



Generation 4, etc … 



Fixed wheel positions, constrained bounding area,  

Chromosome is a series of  slices 

\fitnesses evaluated via a simple airflow simulation  

Bentley.s thesis work 



GA Example 

• Crossover probability, PC = 1.0 

• Mutation probability, PM = 0.0 

• Maximise f(x) = x3 - 60 * x2 + 900 * x +100 

• 0 <= x >= 31 

• x can be represented using five binary digits 

0 100

1 941

2 1668

3 2287

4 2804

5 3225

6 3556

7 3803

8 3972

9 4069

10 4100

11 4071

12 3988

13 3857

14 3684

15 3475

16 3236

17 2973

18 2692

19 2399

20 2100

21 1801

22 1508

23 1227

24 964

25 725

26 516

27 343

28 212

29 129

30 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

Max : x = 10

f(x) = x^3 - 60x^2 + 900x + 100

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall  



GA Example 

• Generate random individuals 

Chromosome Binary String x f(x)

P1 11100 28 212

P2 01111 15 3475

P3 10111 23 1227

P4 00100 4 2804

TOTAL 7718

AVERAGE 1929.50

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall  



GA Example 

• Choose Parents, using roulette wheel 

selection 

• Crossover point is chosen randomly 

Roulette Wheel Parent Chosen Crossover Point

4116 P3 N/A

1915 P2 1

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall  



GA Example - Crossover 

1 0 1 1 1 

0 1 1 1 1 

P3 

P2 

1 1 1 1 1 

0 0 1 1 1 

C1 

C2 

0 0 1 0 0 

0 1 1 1 1 

P4 

P2 

0 0 1 1 1 

0 1 1 0 0 

C3 

C4 

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall  



GA Example - After First Round of Breeding 
• The average evaluation has risen 

• P2, was the strongest individual in the initial 

population. It was chosen both times but we have 

lost it from the current population 

• We have a value of x=7 in the population which is 

the closest value to 10 we have found 

Chromosome Binary String x f(x)

P1 11111 31 131

P2 00111 7 3803

P3 00111 7 3803

P4 01100 12 3998

TOTAL 11735

AVERAGE 2933.75

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall  



Travelling Salesman Example 

 

The Traveling Salesman Problem: 
 

Find a tour of a given set of cities so that  

– each city is visited only once 

– the total distance traveled is minimized 
 

 



Representation 

Representation is an ordered list of city 

numbers known as an order-based GA. 
 

1) London     3) Iowa City      5) Beijing     7) Tokyo 

2) Venice      4) Singapore     6) Phoenix   8) Victoria 

 

CityList1     (3   5   7   2   1   6   4   8) 

CityList2     (2   5   7   6   8   1   3   4) 



Crossover 

 
Crossover combines inversion and recombination: 

 

Parent1      (3   5   7   2   1   6   4   8) 

Parent2      (2   5   7   6   8   1   3   4) 
 

Child          (5   8   7   2   1   6   3   4) 

 
(1) Copy a randomly selected portion of Parent1 to Child 

(2) Fill the blanks in Child with those numbers in Parent2 from left to right, 
as long as there are no duplication in Child. 

This operator is called the Order1 crossover. 



Mutation 

Mutation involves swapping two 
numbers of the list: 

                                     *                    * 

Before:        (5   8   7   2   1   6   3   4) 

 

After:          (5   8   6   2   1   7   3   4) 



TSP Example: 30 Cities 
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Solution i (Distance = 941) 
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Solution j(Distance = 800) 
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Solution k(Distance = 652) 
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Best Solution (Distance = 420) 
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Overview of Performance 
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Typical run: progression of fitness 

Typical run of an EA shows so-called “anytime behavior” 
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Progress in 2nd half 

    Are long runs beneficial? 

• Answer:  

  - it depends how much you want the last bit of progress 

  - it may be better to do more shorter runs 



T: time needed to reach level F after random initialisation   

T 

Time (number of generations) 
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F: fitness after smart initialisation 
F 

Is it worth expending effort on smart 
initialisation? 

•  Answer : it depends:  

 - possibly, if good solutions/methods exist. 

 - care is needed 



 



• After 200 iterations 
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