
Evolutionary Algorithms

Vijay Kumar Gupta

vkgupta@iiitdmj.ac.in

Evolution

• Evolution is the change in the inherited traits of
a population from one generation to the next.

• Natural selection leading to better and better
species

Evolution – Fundamental Laws

• Survival of the fittest.

• Change in species is due to change in genes
over reproduction or/and due to mutation.

An Example showing the concept of survival of the fittest and reproduction over

generations.

What is Evolutionary Computation?

A technique borrowed from the theory of
biological evolution that is used to create
optimization procedures or methodologies,
usually implemented on computers, that are
used to solve problems.

 Natural Selection

• Limited number of resources

• Competition results in struggle for existence

• Success depends on fitness --

• fitness of an individual: how well-adapted an
individual is to their environment. This is
determined by their genes (blueprints for their
physical and other characteristics).

• Successful individuals are able to reproduce and
pass on their genes

When changes occur ...

• Previously “fit” (well-adapted) individuals will no
longer be best-suited for their environment

• Some members of the population will have genes that
confer different characteristics than “the norm”.
Some of these characteristics can make them more
“fit” in the changing environment.

Genetic Change in Individuals

• Mutation in genes

– may be due to various sources (e.g. UV rays,
chemicals, etc.)

Start:

1001001001001001001001

Location of Mutation After Mutation:

1001000001001001001001

Genetic Change in Individuals

• Recombination (Crossover)

– occurs during reproduction -- sections of genetic
material exchanged between two chromosomes

Recombination (Crossover)

Image from http://esg-www.mit.edu:8001/bio/mg/meiosis.html

The Nature of Computational Problems

• Require search through many possibilities to find a
solution

• (e.g. search through sets of rules for one set that best predicts the
ups and downs of the financial markets)

– Search space too big -- search won’t return within our
lifetimes

• Require algorithm to be adaptive or to construct
original solution

• (e.g. interfaces that must adapt to idiosyncrasies of different users)

Why Evolution Proves to be a Good Model for
Solving these Types of Problems

• Evolution is a method of searching for an (almost)
optimal solution

• Possibilities -- all individuals

• Best solution -- the most “fit” or well-adapted individual

• Evolution is a parallel process
• Testing and changing of numerous species and individuals occur at

the same time (or, in parallel)

• Evolution can be seen as a method that designs new
(original) solutions to a changing environment

Evolutionary Computing

• Genetic Algorithms

– invented by John Holland (University of Michigan)
in the 1960’s

• Evolution Strategies

– invented by Ingo Rechenberg (Technical University
Berlin) in the 1960’s

• Started out as individual developments, but
converged in the later years

Search Methods

13

Genetic Algorithm (GA)

• Search-based optimization technique based on the principles of
Genetics and Natural Selection.

• It is frequently used to find optimal or near-optimal solutions to
difficult problems which otherwise would take a lifetime to solve.

• It is frequently used to solve optimization problems, in research,
and in machine learning.

• GAs are a subset of a much larger branch of computation known
as Evolutionary Computation.

• GAs were developed by John Holland and his students and
colleagues at the University of Michigan, most notably David E.
Goldberg and has since been tried on various optimization
problems with a high degree of success.

• In GAs, we have a pool or a population of possible solutions to
the given problem.

• These solutions then undergo recombination and mutation
(like in natural genetics), producing new children, and the
process is repeated over various generations.

• Each individual (or candidate solution) is assigned a fitness
value (based on its objective function value) and the fitter
individuals are given a higher chance to mate and yield more
“fitter” individuals. This is in line with the Darwinian Theory of
“Survival of the Fittest”.

• In this way we keep “evolving” better individuals or solutions
over generations, till we reach a stopping criterion.

• Genetic Algorithms are sufficiently randomized in nature, but
they perform much better than random local search (in which
we just try various random solutions, keeping track of the best
so far), as they exploit historical information as well.

Advantages of GAs

• Does not require any derivative information (which may not be available
for many real-world problems).

• Is faster and more efficient as compared to the traditional methods.

• Has very good parallel capabilities.

• Optimizes both continuous and discrete functions and also multi-
objective problems.

• Provides a list of “good” solutions and not just a single solution.

• Always gets an answer to the problem, which gets better over the time.

• Useful when the search space is very large and there are a large number
of parameters involved.

Limitations of GAs

• GAs are not suited for all problems, especially problems which
are simple and for which derivative information is available.

• Fitness value is calculated repeatedly which might be
computationally expensive for some problems.

• Being stochastic, there are no guarantees on the optimality or
the quality of the solution.

• If not implemented properly, the GA may not converge to the
optimal solution.

Genetic Algorithm Flow Chart

Why GA

• There is a large set of problems, which are NP-Hard. What

this essentially means is that, even the most powerful
computing systems take a very long time (even years!) to
solve that problem. In such a scenario, GAs prove to be an
efficient tool to provide usable near-optimal solutions in a
short amount of time.

• Traditional calculus based methods work by starting at a
random point and by moving in the direction of the gradient,
till we reach the top of the hill. This technique is efficient and
works very well for unimodal objective functions like the cost
function in linear regression.

• But, in most real-world situations, we have a very complex
problem called as landscapes, which are multimodal in nature.
For such problems gradient methods does not provide solution
as they get stuck at the local optima as shown in the figure.

• Getting a Good Solution Fast

• Some difficult problems like the Travelling Salesperson Problem
(TSP), have real-world applications like path finding. Suppose, you
are moving on a road and using your GPS Navigation system. It
takes a few minutes (or even a few hours) to compute the
“optimal” path from the source to destination. Delay in such real
world applications is not acceptable and therefore a “good-
enough” solution, which is delivered “fast” is what is required.

Basic Terminology

Population − It is a subset of all the possible (encoded) solutions to
the given problem.
Chromosomes − A chromosome is one such solution to the given
problem.
Gene − A gene is one element position of a chromosome.
Allele − It is the value a gene takes for a particular chromosome.

Genotype − Genotype is the population in the computation space.
In the computation space, the solutions are represented in a way
which can be easily understood and manipulated using a computing
system.

Phenotype − Phenotype is the population in the actual real world
solution space in which solutions are represented in a way they are
represented in real world situations.

Decoding and Encoding − For simple problems, the phenotype and
genotype spaces are the same. However, in most of the cases, the
phenotype and genotype spaces are different. Decoding is a process
of transforming a solution from the genotype to the phenotype
space, while encoding is a process of transforming from the
phenotype to genotype space. Decoding should be fast as it is
carried out repeatedly in a GA during the fitness value calculation.

Genotype space can be represented as a binary string of length n
(where n is the number of items).
A 0 at position x represents that xth item is picked while a 1
represents the reverse.
This is a case where genotype and phenotype spaces are different.

Fitness Function − A fitness function simply defined is a function
which takes the solution as input and produces the suitability of
the solution as the output. In some cases, the fitness function and
the objective function may be the same, while in others it might
be different based on the problem.

Genetic Operators − These alter the genetic composition of the
offspring. These include crossover, mutation, selection, etc.

A Combination Operator for Expressions

Basic Structure

Individual Encoding/ Representation

– Bit strings (0101 ... 1100)

– Real numbers (43.2 -33.1 ... 0.0 89.2)

– Permutations of element (E11 E3 E7 ... E1 E15)

– Lists of rules (R1 R2 R3 ... R22 R23)

– Program elements (genetic programming)

– ... any data structure ...

Representation

Representation is very important in GA. It has been observed that
improper representation can lead to poor performance of the GA.

Binary Representation
• This is one of the simplest and most widely used representation in GAs.

In this type of representation the genotype consists of bit strings.

• For Boolean decision variables – yes or no, the binary representation is
natural.

• For other problems, specifically those dealing with numbers, we can
represent the numbers with their binary representation. The problem
with this is that different bits have different significance and therefore
mutation and crossover operators can have undesired consequences.

• This can be resolved to some extent by using Gray Coding, as a change
in one bit does not have a massive effect on the solution.

Real Valued Representation
• For problems where we want to define the genes using

continuous rather than discrete variables, the real valued
representation is the most natural. The precision of these real
valued or floating point numbers is however limited to the
computer.

Integer Representation
• For discrete valued genes, we cannot always limit the solution

space to binary ‘yes’ or ‘no’. For example, if we want to encode
the four distances – North, South, East and West, we can encode
them as {0,1,2,3}. In such cases, integer representation is
desirable.

Permutation Representation
• In many problems, the solution is represented by an order of

elements. In such cases permutation representation is the most
suited.

• A classic example of this representation is the travelling
salesman problem (TSP). In this the salesman has to take a tour
of all the cities, visiting each city exactly once and come back to
the starting city. The total distance of the tour has to be
minimized. The solution to this TSP is naturally an ordering or
permutation of all the cities and therefore using a permutation
representation makes sense for this problem.

Population

Population is a subset of solutions in the current generation. It can
also be defined as a set of chromosomes.

The diversity of the population should be maintained otherwise it
might lead to premature convergence.

The population size should not be kept very large as it can cause a
GA to slow down, while a smaller population might not be enough
for a good mating pool. Therefore, an optimal population size needs
to be decided by trial and error.

The population is usually defined as a two dimensional array of –
size population, size x, chromosome size.

Population Initialization

• There are two primary methods to initialize a population in a GA.

Random Initialization − Populate the initial population with
completely random solutions.

• Heuristic initialization − Populate the initial population using a
known heuristic for the problem.

• It has been observed that the entire population should not be

initialized using a heuristic, as it can result in the population
having similar solutions and very little diversity.

• It has been experimentally observed that the random solutions
are the ones to drive the population to optimality.

• It has also been observed that heuristic initialization in some
cases, only effects the initial fitness of the population, but in the
end, it is the diversity of the solutions which lead to optimality.

Population Models

There are two population models widely in use −

• Steady State
• In steady state GA, we generate one or two off-springs in each

iteration and they replace one or two individuals from the
population. A steady state GA is also known as Incremental GA.

• Generational
• In a generational model, we generate ‘n’ off-springs, where n is

the population size, and the entire population is replaced by the
new one at the end of the iteration.

Fitness Function

• The fitness function simply defined is a function which takes a

candidate solution to the problem as input and produces as
output how “fit” our how “good” the solution is with respect to
the problem in consideration.

A fitness function should possess the following characteristics −
• The fitness function should be sufficiently fast to compute.
• It must quantitatively measure how fit a given solution is or how

fit individuals can be produced from the given solution.
• In some cases, calculating the fitness function directly might not

be possible due to the inherent complexities of the problem at
hand. In such cases, we do fitness approximation to suit our
needs.

Selection
• Parent Selection is the process of selecting parents which mate

and recombine to create off-springs for the next generation.
• Parent selection is very crucial to the convergence rate of the

GA as good parents drive individuals to a better and fitter
solutions.

• However, care should be taken to prevent one extremely fit
solution from taking over the entire population in a few
generations, as this leads to the solutions being close to one
another in the solution space thereby leading to a loss of
diversity.

• Maintaining good diversity in the population is extremely
crucial for the success of a GA.

• This taking up of the entire population by one extremely fit
solution is known as premature convergence and is an
undesirable condition in a GA.

Fitness Proportionate Selection
• Fitness Proportionate Selection is one of the most popular ways

of parent selection.
• In this every individual can become a parent with a probability

which is proportional to its fitness. Therefore, fitter individuals
have a higher chance of mating and propagating their features
to the next generation.

• Therefore, such a selection strategy applies a selection pressure
to the more fit individuals in the population, evolving better
individuals over time.

• Consider a circular wheel. The wheel is divided into n pies,
where n is the number of individuals in the population. Each
individual gets a portion of the circle which is proportional to its
fitness value.

Roulette Wheel Selection
• In a roulette wheel selection, the circular wheel is divided as

described before. A fixed point is chosen on the wheel
circumference as shown and the wheel is rotated. The region of
the wheel which comes in front of the fixed point is chosen as
the parent.

• For the second parent, the same process is repeated.

• It is clear that a fitter individual has a greater area on the wheel
and therefore a greater chance of landing in front of the fixed
point when the wheel is rotated.

• Therefore, the probability of choosing an individual depends
directly on its fitness.

Implementation −
• Calculate S = the sum of a fitness.
• Generate a random number between 0 and S.
• Starting from the top of the population, keep adding the fitness

to the partial sum P, till P<S.
• The individual for which P exceeds S is the chosen individual.

Roulette wheel selection

Each string is formed by concatenating four substrings representing

variables a, b, c and d. Length of each string is taken as four bits

Consider a population containing four strings shown

Parent Selection: Roulette wheel selection

• These probabilities are represented on a pie chart

• Then four numbers are randomly generated between 1 and 100

• The likeliness of these numbers falling in the region of

candidate 2 might be once, whereas for candidate 4 it might be

twice and candidate 1 more than once and for candidate 3 it

may not fall at all

• Thus, the strings are chosen to form the parents of the next

generation

• The main disadvantage of this method is when the fitnesses

differ very much

• For example, if the best chromosome fitness is 90% of the

entire roulette wheel then the other chromosomes will have

very few chances to be selected

Stochastic Universal Sampling (SUS)

• Stochastic Universal Sampling is quite similar to Roulette wheel

selection, however instead of having just one fixed point, we
have multiple fixed points as shown in the following image.

• Therefore, all the parents are chosen in just one spin of the
wheel. Also, such a setup encourages the highly fit individuals
to be chosen at least once.

• It is to be noted that fitness proportionate selection methods
don’t work for cases where the fitness can take a negative
value.

Tournament Selection
• In K-Way tournament selection, we select K individuals from the

population at random and select the best out of these to
become a parent.

• The same process is repeated for selecting the next parent.
• Tournament Selection is also extremely popular in literature as it

can even work with negative fitness values.

Rank Selection
• Rank Selection also works with negative fitness values and is

mostly used when the individuals in the population have very
close fitness values (this happens usually at the end of the run).

• This leads to each individual having an almost equal share of the
pie and hence each individual no matter how fit relative to each
other has an approximately same probability of getting selected
as a parent.

• This in turn leads to a loss in the selection pressure towards
fitter individuals, making the GA to make poor parent selections
in such situations.

Chromosome Fitness Value Rank
A 8.1 1
B 8.0 4
C 8.05 2
D 7.95 6
E 8.02 3
F 7.99 5

• The concept of a fitness value is removed while selecting a parent.
However, every individual in the population is ranked according to their
fitness.

• The selection of the parents depends on the rank of each individual and
not the fitness.

• The higher ranked individuals are preferred more than the lower ranked
ones.

Random Selection
• In this strategy parents are randomly selected from the existing population.
• There is no selection pressure towards fitter individuals and therefore this

strategy is usually avoided.

CROSSOVER

• The crossover operator is analogous to reproduction and biological

crossover.
• In this more than one parent is selected and one or more off-

springs are produced using the genetic material of the parents.
• Crossover is usually applied in a GA with a high probability

Crossover Operators

One Point Crossover
• In this one-point crossover, a random crossover point is selected

and the tails of its two parents are swapped to get new off-springs.

Multi Point Crossover

• Multi point crossover is a generalization of the one-point
crossover wherein alternating segments are swapped to get
new off-springs.

Uniform Crossover
• In a uniform crossover, the chromosome are not divided into

segments, rather treated separately.
• In this, we essentially flip a coin for each chromosome to decide

whether or not it’ll be included in the off-spring.
• We can also bias the coin to one parent, to have more genetic

material in the child from that parent.

Whole Arithmetic Recombination

• This is commonly used for integer representations and works

by taking the weighted average of the two parents by using
the following formulae −

• Child1 = α.x + (1-α).y
• Child2 = (1-α).x + α.y
• Obviously, if α = 0.5, then both the children will be identical as

shown in the following image.

Davis’ Order Crossover (OX1)
• OX1 is used for permutation based crossovers with the intention

of transmitting information about relative ordering to the off-
springs.

• It works as follows −
• Create two random crossover points in the parent and copy

the segment between them from the first parent to the first
offspring.

• Now, starting from the second crossover point in the second
parent, copy the remaining unused numbers from the second
parent to the first child, wrapping around the list.

• Repeat for the second child with the parent’s role reversed.

There exist a lot of other crossovers like
• Partially Mapped Crossover (PMX),
• Order based crossover (OX2),
• Shuffle Crossover,
• Ring Crossover, etc.

MUTATION

• Mutation may be defined as a small random tweak in the

chromosome, to get a new solution.
• It is used to maintain and introduce diversity in the genetic

population and is usually applied with a low probability – pm.
• If the probability is very high, the GA gets reduced to a

random search.
• Mutation is the part of the GA which is related to the

“exploration” of the search space. It has been observed that
mutation is essential to the convergence of the GA while
crossover is not.

Mutation Operators
In this section, we describe some of the most commonly used
mutation operators. Like the crossover operators, this is not an
exhaustive list and the GA designer might find a combination of
these approaches or a problem-specific mutation operator more
useful.
Bit Flip Mutation
In this bit flip mutation, we select one or more random bits and
flip them. This is used for binary encoded GAs.

Random Resetting
• Random Resetting is an extension of the bit flip for the integer

representation. In this, a random value from the set of
permissible values is assigned to a randomly chosen gene.

Swap Mutation
• In swap mutation, we select two positions on the chromosome

at random, and interchange the values. This is common in
permutation based encodings.

Scramble Mutation
• Scramble mutation is also popular with permutation

representations. In this, from the entire chromosome, a subset
of genes is chosen and their values are scrambled or shuffled
randomly.

Inversion Mutation
• In inversion mutation, we select a subset of genes like in

scramble mutation, but instead of shuffling the subset, we
merely invert the entire string in the subset.

SURVIVOR SELECTION

• The Survivor Selection Policy determines which individuals are

to be kicked out and which are to be kept in the next
generation.

• It is crucial as it should ensure that the fitter individuals are
not kicked out of the population, while at the same time
diversity should be maintained in the population.

• Some GAs employ Elitism. In simple terms, it means the
current fittest member of the population is always propagated
to the next generation. Therefore, under no circumstance can
the fittest member of the current population be replaced.

• The easiest policy is to kick random members out of the
population, but such an approach frequently has convergence
issues, therefore the following strategies are widely used.

Age Based Selection
• In Age-Based Selection, we don’t have a notion of a fitness.
• In this, each individual is allowed in the population for a finite

generation where it is allowed to reproduce, after that, it is
kicked out of the population no matter how good its fitness is.

• For instance, in the following example, the age is the number of
generations for which the individual has been in the population.
The oldest members of the population i.e. P4 and P7 are kicked
out of the population and the ages of the rest of the members
are incremented by one.

Fitness Based Selection
• In this fitness based selection, the children tend to replace the

least fit individuals in the population. The selection of the least
fit individuals may be done using a variation of any of the
selection policies such as tournament selection, fitness
proportionate selection, etc.

• For example, in the following image, the children replace the
least fit individuals P1 and P10 of the population. It is to be
noted that since P1 and P9 have the same fitness value, the
decision to remove which individual from the population is
arbitrary.

TERMINATION

• The termination condition of a Genetic Algorithm is important

in determining when a GA run will end.

• It has been observed that initially, the GA progresses very fast
with better solutions coming in every few iterations, but this
tends to saturate in the later stages where the improvements
are very small.

• We usually want a termination condition such that our solution
is close to the optimal, at the end of the run.

Usually, we keep one of the following termination conditions −
• When there has been no improvement in the population for X iterations.

• When we reach an absolute number of generations.

• When the objective function value has reached a certain pre-defined value.

• For example, in a genetic algorithm we keep a counter which keeps track of

the generations for which there has been no improvement in the
population. Initially, we set this counter to zero. Each time we don’t
generate off-springs which are better than the individuals in the population,
we increment the counter.

• However, if the fitness any of the off-springs is better, then we reset the
counter to zero. The algorithm terminates when the counter reaches a
predetermined value.

• Like other parameters of a GA, the termination condition is also highly
problem specific and the user should try out various options to see what
suits his particular problem the best.

ADAPTION

• Other models of lifetime adaptation – Lamarckian Model and
Baldwinian Model also do exist.

• It is to be noted that whichever model is the best, is open for
debate and the results obtained by researchers show that the
choice of lifetime adaptation is highly problem specific.

• Often, we hybridize a GA with local search – like in Memetic
Algorithms.

• In such cases, one might choose do go with either Lamarckian or
Baldwinian Model to decide what to do with individuals
generated after the local search.

Lamarckian Model

• The Lamarckian Model essentially says that the traits which an

individual acquires in his/her lifetime can be passed on to its
offspring. It is named after French biologist Jean-Baptiste
Lamarck.

• Even though, natural biology has completely disregarded
Lamarckism as we all know that only the information in the
genotype can be transmitted.

• However, from a computation view point, it has been shown that
adopting the Lamarckian model gives good results for some of the
problems.

• In the Lamarckian model, a local search operator examines the
neighborhood (acquiring new traits), and if a better chromosome
is found, it becomes the offspring

Baldwinian Model
• The Baldwinian model is an intermediate idea named after James

Mark Baldwin (1896).
• In the Baldwin model, the chromosomes can encode a tendency

of learning beneficial behaviors. This means, that unlike the
Lamarckian model, we don’t transmit the acquired traits to the
next generation, and neither do we completely ignore the
acquired traits like in the Darwinian Model.

• The Baldwin Model is in the middle of these two extremes,
wherein the tendency of an individual to acquire certain traits is
encoded rather than the traits themselves.

• In this Baldwinian Model, a local search operator examines the
neighborhood (acquiring new traits), and if a better chromosome
is found, it only assigns the improved fitness to the chromosome
and does not modify the chromosome itself.

• The change in fitness signifies the chromosomes capability to
“acquire the trait”, even though it is not passed directly to the
future generations.

Introduce problem-specific domain knowledge
• It has been observed that the more problem-specific domain

knowledge we incorporate into the GA; the better objective
values we get.

• Adding problem specific information can be done by either using
problem specific crossover or mutation operators, custom
representations, etc.

• The following image shows Michalewicz’s (1990) view of the EA −

Reduce Crowding
• Crowding happens when a highly fit chromosome gets to

reproduce a lot, and in a few generations, the entire
population is filled with similar solutions having similar fitness.

• This reduces diversity which is a very crucial element to ensure
the success of a GA. There are numerous ways to limit
crowding. Some of them are −
• Mutation to introduce diversity.
• Switching to rank selection and tournament selection

which have more selection pressure than fitness
proportionate selection for individuals with similar fitness.

• Fitness Sharing − In this an individual’s fitness is reduced if
the population already contains similar individuals.

Hybridize GA with Local
Search
• Local search refers to

checking the solutions
in the neighborhood of
a given solution to look
for better objective
values.

• It may be sometimes
useful to hybridize the
GA with local search.

• The image shows the
various places in which
local search can be
introduced in a GA

Tuning a GA
• “Typical” tuning parameters for a small problem

• Other concerns
– population diversity
– ranking policies
– removal policies
– role of random bias

Population size: 50 – 100

Children per generation: = population size

Crossovers: 0 – 3

Mutations: < 5%

Generations: 20 – 20,000

Initial population

Select

Crossover

Another Crossover

A mutation

Another Mutation

Old population + children

New Population: Generation 2

Generation 3

Generation 4, etc …

Fixed wheel positions, constrained bounding area,

Chromosome is a series of slices

\fitnesses evaluated via a simple airflow simulation

Bentley.s thesis work

GA Example

• Crossover probability, PC = 1.0

• Mutation probability, PM = 0.0

• Maximise f(x) = x3 - 60 * x2 + 900 * x +100

• 0 <= x >= 31

• x can be represented using five binary digits

0 100

1 941

2 1668

3 2287

4 2804

5 3225

6 3556

7 3803

8 3972

9 4069

10 4100

11 4071

12 3988

13 3857

14 3684

15 3475

16 3236

17 2973

18 2692

19 2399

20 2100

21 1801

22 1508

23 1227

24 964

25 725

26 516

27 343

28 212

29 129

30 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

Max : x = 10

f(x) = x^3 - 60x^2 + 900x + 100

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall

GA Example

• Generate random individuals

Chromosome Binary String x f(x)

P1 11100 28 212

P2 01111 15 3475

P3 10111 23 1227

P4 00100 4 2804

TOTAL 7718

AVERAGE 1929.50

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall

GA Example

• Choose Parents, using roulette wheel

selection

• Crossover point is chosen randomly

Roulette Wheel Parent Chosen Crossover Point

4116 P3 N/A

1915 P2 1

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall

GA Example - Crossover

1 0 1 1 1

0 1 1 1 1

P3

P2

1 1 1 1 1

0 0 1 1 1

C1

C2

0 0 1 0 0

0 1 1 1 1

P4

P2

0 0 1 1 1

0 1 1 0 0

C3

C4

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall

GA Example - After First Round of Breeding
• The average evaluation has risen

• P2, was the strongest individual in the initial

population. It was chosen both times but we have

lost it from the current population

• We have a value of x=7 in the population which is

the closest value to 10 we have found

Chromosome Binary String x f(x)

P1 11111 31 131

P2 00111 7 3803

P3 00111 7 3803

P4 01100 12 3998

TOTAL 11735

AVERAGE 2933.75

Source: G5BAIM Artificial Intelligence Methods by Graham Kendall

Travelling Salesman Example

The Traveling Salesman Problem:

Find a tour of a given set of cities so that

– each city is visited only once

– the total distance traveled is minimized

Representation

Representation is an ordered list of city

numbers known as an order-based GA.

1) London 3) Iowa City 5) Beijing 7) Tokyo

2) Venice 4) Singapore 6) Phoenix 8) Victoria

CityList1 (3 5 7 2 1 6 4 8)

CityList2 (2 5 7 6 8 1 3 4)

Crossover

Crossover combines inversion and recombination:

Parent1 (3 5 7 2 1 6 4 8)

Parent2 (2 5 7 6 8 1 3 4)

Child (5 8 7 2 1 6 3 4)

(1) Copy a randomly selected portion of Parent1 to Child

(2) Fill the blanks in Child with those numbers in Parent2 from left to right,
as long as there are no duplication in Child.

This operator is called the Order1 crossover.

Mutation

Mutation involves swapping two
numbers of the list:

 * *

Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)

TSP Example: 30 Cities

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

Solution i (Distance = 941)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 (Performance = 941)

Solution j(Distance = 800)

44

62

69

67

78

64

62

54

42

50

40

40

38

21

35

67

60

60

40

42

50

99

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 (Performance = 800)

Solution k(Distance = 652)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 (Performance = 652)

Best Solution (Distance = 420)
42

38

35

26

21

35

32

7

38

46

44

58

60

69

76

78

71

69

67

62

84

94

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 Solution (Performance = 420)

Overview of Performance

0

200

400

600

800

1000

1200

1400

1600

1800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

D
is
ta
n
c
e

Generations (1000)

TSP30 - Overview of Performance

Best

Worst

Average

Typical run: progression of fitness

Typical run of an EA shows so-called “anytime behavior”

B
e
s
t

fi
tn

e
s
s
 i
n
 p

o
p
u
la

ti
o
n

Time (number of generations)

B
e

s
t
fi
tn

e
s
s
 i
n

 p
o

p
u

la
ti
o

n

Time (number of generations)

Progress in 1st half

Progress in 2nd half

 Are long runs beneficial?

• Answer:

 - it depends how much you want the last bit of progress

 - it may be better to do more shorter runs

T: time needed to reach level F after random initialisation

T

Time (number of generations)

B
e

s
t
fi
tn

e
s
s
 i
n

 p
o

p
u

la
ti
o

n

F: fitness after smart initialisation
F

Is it worth expending effort on smart
initialisation?

• Answer : it depends:

 - possibly, if good solutions/methods exist.

 - care is needed

• After 200 iterations

REFERENCES

• Genetic Algorithms in Search, Optimization and Machine Learning by
David E. Goldberg.

• Genetic Algorithms + Data Structures = Evolutionary Programs by Zbigniew
Michalewicz.

• Practical Genetic Algorithms by Randy L. Haupt and Sue Ellen Haupt.
• Multi Objective Optimization using Evolutionary Algorithms by Kalyanmoy

Deb.
• Introduction to evolutionary algorithms by Yu, X. and Gen M., Springer
• G5BAIM Artificial Intelligence Methods by Graham Kendall (PPT

Presentation)
• Biological Inspired Computing: EAIntro (PPT Presentation)
• Genetic Algorithms and Evolution Strategies by Julie Leung, Keith Kern and

Jeremy Dawson (PPT Presentation)
• https://www.tutorialspoint.com/genetic_algorithms/

Thanks

