B.Tech/ B.Des

Semester-I

Subject Code	NS1001	Course Title	Mathematics-I
Contact Hours	L-3, T-1, P-0	Credit	4
Programme	B.Tech	Semester	I
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%), Mid term (30%), Quiz II (15%), End term (40%)		

Module 1: Calculus of Functions of One Variable:

Real Numbers, Functions, Sequences, Limit and Continuity, Differentiation : Review, Successive differentiation, Chain rule and Libnitz Theorem, Rolle's and Mean Value Theorems, Maxima/Minima, Linear and Quadratic approximations, Error estimates, Taylor's Theorem, The Riemann Integrals, Improper Integrals, Infinite series, Tests of convergence, Absolute and Conditional convergence, Taylor and Maclaurin series. [21H]

Module 2: Calculus of Functions of Several Variables:

Scalar fields, Limit and Continuity, Partial derivatives, Chain rules, Implicit differentiation, Directional derivatives, Total differential, Tangent planes and Normals, directional derivative, Maxima/Minima and Saddle points, Constrained maxima and minima, Double Integrals, Change of variables. [14H]

Module 3: Vector Calculus:

Vector fields, Divergence and Curl, Line Integrals, Green's Theorem, Surface Integrals, Divergence Theorem, Stoke's Theorem and applications. [07H]

Text/Reference books:

- 1. Calculus and Analytic Geometry by G.B. Thomas and R.L. Finney,
- 2. Introduction to Real Analysis by R. G. Bartle and D. R. Sherbert.

Subject Code	NS1002	Course Title	Engineering Mechanics
Contact Hours	L-2, T-1, P-2	Credit	4
Programme	B.Tech	Semester	1
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Mid term (20%), Quiz II (10%),Lab (20%) End term (40%)		

Scalars and Vectors, Cartesian and curvilinear coordinate system, Newtons law: statics and dynamics, centre of mass and variable mass problem, work and energy, stable and unstable equilibrium, collisions in two dimension: Laboratory and COM frame [07H]

Double and triple integrals, Line, surface & volume integrals, Gradient, Divergence & Curl (in Cartesian and curvilinear coordinates), Line, surface, volume integrals, Guass's and Stoke's theorem (problems and physical significance) [07H]

Rotational motion, Torque, Angular momentum, Moments of Inertia, pure rotation and center of percussion (example), combined translation and rotation & the role of centre of mass, Chasles' Theorem, Moments of Inertia. [07H]

Moment of inertia tensor, Principal Axes of Inertia, Finding the Principal Axes; Eigenvalue Equations, Precession of a Top due to a Weak Torque & gyroscopic motion [07H]

Lab experiments:

- 1. Introduction to error analysis
- 2. Spring oscillation apparatus
- 3. Simple pendulum
- 4. Moment of inertia of a flywheel
- 5. Determine g by Bar pendulum
- 6. Tortional pendulum
- 7. Sonometer
- 8. Stoke's law
- 9. Newton's law of cooling

Text/Reference books:

- 1. Introduction to mechanics: Daniel Kleppner, Robert J. Kolenkow
- 2. Mathematical Methods in the Physical Sciences: Mary L. Boas

Subject Code	DS1002	Course Title	Design Fundamentals 1
Contact Hours	L-2, T-0 P-2	Credit	3
Programme	B. Des	Semester	1
Pre-requisites	NIL		
Evaluation schome	$Q_{\rm Hiz} \perp (15\%)$ Midtorm (20%) $Q_{\rm Hiz} \parallel (15\%)$ End torm (40%)		

Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%) Evaluation scheme Introduction to design – Nature of design, Aesthetic sense, Role of perception, Gestalt principle, Inspiration, concepts, problem solving Product integrity (consistency between a product's function With its structure and customer expectations) [07H Lecture,+3H Lab] Originality (originality in technology and form; plagiarism) Craftsmanship required transforming an idea to a product etc. An introduction to basic elements of Design: Point, Line – Line as Expression, Quality of lines, Symbolic Lines, Line as form etc. Space – Pictorial space, implied space, space illusion, actual space etc. [07H Lecture,+3H Lab] Shape & Form– Natural shapes, geometric shapes, abstract shapes, non-representational shapes; Natural forms, geometric forms, abstract forms, non-objective forms. [07H Lecture,+3H Lab] Color – color theory, color properties, color relationships, color harmony, color interaction. Texture tactile texture, visual texture, texture and pattern, constructed textures, symbolic textures. [07H Lecture,+3H Lab]

Text/Reference books:

- 1. Bervin, M. E. (1984). Design Through Discovery: The Element and Principles. Holt, Rinehart and Winston, Washington.
- 2. Wong, W. (1972). Principles of two-dimensional design. John Wiley & Sons. Sherwin, D. (2010). Creative workshop: 80 challenges to sharpen your design skills. How Books.
- 3. Brommer, G. F. (1994). Collage techniques: A guide for artists and illustrators. Watson-Guptill Publications. Kelley, T., & Kelley, D. (2013). Creative confidence: Unleashing the creative potential within us all. Crown Business.

Subject Code	DS1003	Course Title	D	esign Drawing	
Contact Hours	L-1, T-0, P-3	Credit	2		
Programme	B.Des	Semester	1		
Pre-requisites	NIL				
Evaluation scheme	Quiz I (15%), Midterm (3	0%), Quiz II (15%)), End term	(40%)	
Including a combination	of engineering and artisti	c drawing skills.		[07H Lecture,+3H Lab]	
Free hand drawing from natural or manmade environment develops the skill of coordination of mind					
and hand during the pro	cess of representation.			[07H Lecture,+3H Lab]	
Free hand drawing of	f Isometric (30-30), Dia	metric (15-15),	Trimetric	(45-15) and One point.	
				[07H Lecture,+3H Lab]	
Two point and Three poi	nt perspective in real loca	ition.		[07H Lecture,+3H Lab]	
Text/Reference books:					

eference books:

- 1. Nicolaides, K. (1990). The natural way to draw: A working plan for art study. Houghton Mifflin Harcourt
- 2. Laning, E. (1971). The act of drawing. McGraw-Hill Companies.
- 3. Ching, F. D., & Juroszek, S. P. (2010). Design drawing. John Wiley & Sons.
- 4. O'Rourke, N., Psych, R., & Hatcher, L. (2013). A step-by-step approach to using SAS for factor analysis and structural equation modelling. SAS Institute.
- 5. Speed, H. (2012). The practice and science of drawing. Courier Corporation.

Subject Code		DS1004	Course Title	Representation Techniques	
Contact Hours		L-2, T-0, P-2	Credit	3	
Programme		B.Des	Semester	1	
Pre-requisites		NIL			
Evaluation sch	eme	Quiz I (15%), Midterm (30)%), Quiz II (15%), End t	erm (40%)	
Different ways	in design id	leas can be represented for	or better visualization.	[07H Lecture,+3H Lab]	
Development	of an ana	lytical attitude and abi	lity to deal with cor	mplexity of imagination and	
visualization of	object fron	n any angle.		[07H Lecture,+3H Lab]	
Understanding	and repres	enting the structure of for	rms in detail with wiref	rames. [07H Lecture,+3H Lab]	
Color representation in the object drawing with section and exploded view. [07H Lecture,+3H Lab]					
Text/Reference books:					
1. Wood, P., & McDonnell, P. (1994). Scientific illustration: a guide to biological, zoological, and					
medical	medical				
rendering	rendering techniques, design, printing, and display. John Wiley & Sons.				
2. Buxton, B. (2010). Sketching user experiences: getting the design right and the right design: getting					
the design right and the right design. Morgan Kaufmann.					
3. Powell, D. (1990). Presentation techniques. New York: Little, Brown & Company.					
4. Tal, D. (20	010). Goog	le Sketch up for site de	sign: a guide to mod	lelling site plans, terrain and	
architectu	e.John Wile	ey & Sons.			

5. Zeman, N. B. (2014). Essential Skills for 3D Modelling, Rendering, and Animation. CRC Press.

Subject Code	HS1001	Course Title	Effective Communication Skills	
Contact Hours	L-2, T-0, P-0	Credit	2	
Programme	B.Tech	Semester	I	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (10%), Mid term (30%), Quiz II (10%), End term (50%)			
Why English? ,Effective Communication Skills-21, Technical English-21, Technical Reports -5 L, Tender				
Notices-2I, Holding Meetings-3I, Good Presentation-3I, Group Discussion-2I, Curriculum Vitae (Cv), Or				
Resume, Bio-Data, Job Application Letter-3l, Interview-2l, Phonetics2l, Grammar-1l				
Text/Reference books:				
1. Developing Communication Skills- Krishna Menon- Macmillan Publication House.				
2. Remedial Grammar- F.T. Wood- Macmillan				
3. Personality Development and Soft Skills- BarunMitra- Oxford Publication House.				

4. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success- Pearson Education

Subject Code	EC1001	Course Title	Introduction to Profession
Contact Hours	L-1, T-0, L-0,	Credit	1
Programme	B.Tech	Semester	I
Pre-requisites	NIL		
Evaluation scheme	Quiz (100%)		
Learning Objective: Ove	rview of Electronics and Com	munication Engi	ineering
Course Detail :			
Module 1: Introduction	to Engineering		
(history, motivation, ethic	s,science vs Engineering vs te	chnology)	
Module 2: Introduction	to Electronics and Communic	ation Engineeri	ng
(history,major areas of E	CE)		
Module 3: Interdisciplina	ry approach, selection of ele	ctives	
Module 4: Applications c	of Electronics and Communica	ation Engineering	g 2
Module 5: Case Studies	and Technological Innovation	ns	-
(Embedded System, VLS	I and Nano Technology, 5G	Communication	, Artificial Intelligence, Robotics, Bio

Medical, Microwave and THz Technology, SCADA and Smart Grid etc.)

Text/Reference books:

- 1. Developing Communication Skills- Krishna Menon- Macmillan Publication House.
- 2. Remedial Grammar- F.T. Wood- Macmillan
- 3. Personality Development and Soft Skills- BarunMitra- Oxford Publication House.
- 4. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success- Pearson Education

Subject Code	ME1001	Course Title	Introduction to Profession		
Contact Hours	L-1, T-0, L-0,	Credit	1		
Programme	B.Tech	Semester	I		
Pre-requisites	NIL				
Evaluation scheme	Quizzes (50%), Assignments	s (50%)			
Learning Objective: Birds'	'eye view of Mechanical Eng	ineering			
Course Detail :					
1. Essential difference among Science, Engineering and Technology					
2. Introduction to Mechanical Engineering					
. Mechanical Engineering as a profession/career					
. Applications of Mechanical Engineering					
5. Examples and Case St	. Examples and Case Studies				
6. Technological Innovat	. Technological Innovations				
Text/Reference books:					
1. Developing Communi	1. Developing Communication Skills- Krishna Menon- Macmillan Publication House.				
2. Remedial Grammar- F.T. Wood- Macmillan					

- 3. Personality Development and Soft Skills- BarunMitra- Oxford Publication House.
- 4. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success- Pearson Education

Subject Code	SM1001	Course Title	Introduction to Profession		
Contact Hours		Credit	1		
Brogrammo	E-1, 1-0, E-0, B Toch	Somostor	1		
	B.Tech	Semester i			
Pre-requisites	NIL				
Evaluation scheme	Quizzes (50%), Assignments (50%)				
Learning Objective: Birds'	eye view of Mechanical Engi	neering			
Course Detail :					
1. Essential difference a	nong Science, Engineering a	nd Technology			
2. Introduction to Smart Manufacturing					
3. Smart Manufacturing as a profession/career					
. IoT, IIoT, Industry 4.0					
Applications of Smart Manufacturing					
6. Examples and Case Studies					
7. Technological Innovations					
Text/Reference books:					
1. Developing Communi	. Developing Communication Skills- Krishna Menon- Macmillan Publication House.				
2. Remedial Grammar- F	. Remedial Grammar- F.T. Wood- Macmillan				
3. Personality Developm	ent and Soft Skills- BarunMit	ra- Oxford Publ	ication House.		
4. The Ace of Soft Skills:	4. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success- Pearson Education				

Programme	B.Des	Semester		
Pre-requisites	NIL			
Evaluation scheme	Quiz: 04: 25% each	·		
Learning Objective:				
Course Detail :				
1. Introduction to Desig	<u>y</u> n			
2. Advent				
3. History				
4. Application Areas				
5. Design Thinking				
6. The user in design				
7. Eminent Designers				
8. Different facets of De	esign			
9. The Design Journey				
10. Technology and Design				
11. Design as a professio	n			
12. What design can and	cannot			
13. Opportunities in Des	ign			
14. The Design Canvas				
Text/Reference books:				
1. Norman, D. (2013). 7	he design of everyday thing	s: Revised and expanded edition. Basic books		
2. Pipes, A. (2003). Fou	ndations of art and design. I	aurence King Publishing.		

- 3. Eames, C., & Eames, R. (2004). The India Report. National Institute of Design
- 4. Balaram, S. (2011). *Thinking design*. SAGE Publications India.

B.Tech / B.Des Semester-II

Subject Code:	NS103b	Course Title	Linear Algebra	
Contact Hours	L-2, T-1, P-2	Credit	4	
Programme	B.Tech	Semester	II	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Mid term (30	0%), Quiz II (15%),	End term (40%)	
Course Detail -				
Module 1: Probability:			[21H]	
Basic Set Operations, Al	gebra and Sigma algebra,	Measurable Space	e, Measure, Measurable Function,	
Probability Measure.			[4H]	
Random Variable, Function of Random Variable, Probability Mass Function, Probability Density Function,				
Cumulative Probability Distribution Function, Independent Event, Expectation, Variance, Covariance,				
Correlation.			[5H]	
Conditional Probability N	leasure, Law of Total Prob	ability, Baye"s Fo	rmula, Baye"s Theorem, Function of	
Several Variables, Joint ar	nd Marginal Distribution Fu	nction	[4H]	
Moments, Moments Ge	enerating Function, Chara	cteristic Function	, Inversion Theorem, Uniqueness	
Theorem, Important Stati	stical Inequalities		[4H]	
Mode of Convergence, Co	onvergence in Law, Conve	rgence in Measure	, Convergence in rth Mean, Almost	
Sure Convergence, Weak	Law of Large Numbers, S	trong Law of Larg	e Numbers, Center Limit Theorem.	
			[9H]	
Module 2: Linear Alegbra: [14H]				
Text/Reference books:				

Subject Code:	NS1004	Course Title	Physics II
Contact Hours	L-3, T-1, P-2	Credit	4
Programme	B.Tech	Semester	II
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Mid term (20%), Quiz II (10%),Lab (20%) End term (40%)		

Course Detail :
The Electric Field, Divergence and curl of electrostatic fields, potential and its relation with electrostatic
Field, The energy of a continuous charge distribution, conductors and induced charges, Laplace's Equation,
theorems regarding boundary conditions, Separation of Variables, The Method of Images. [6H]
Dielectrics, The field of a polarized object, bound charges, Gauss's Law in the Presence of Dielectrics,
Energy in Dielectric Systems [3H]
The Lorentz Force Law, magneto statics and The Biot-Savart Law, The Divergence and Curl of magnetic
field, The Vector Potential, Magnetization, Effect of a Magnetic Field on Atomic Orbits: diamagnetism,
Bound Currents, Ampere's law in Magnetized Materials, Brief idea of ferromagnetism [6H]
Electromotive Force, Motional emf, Electromagnetic Induction, energy in magnetic fields, Maxwell's
modification of Ampere's law, Maxwell's equations, Boundary condition [6H]
Poynting theorem, Electromagnetic Waves, Reflection and Transmission of a wave, Electromagnetic
Waves in Vacuum and dielectric, Energy and Momentum & intensity in Electromagnetic Waves, Reflection
and Transmission of light at Normal Incidence, Reflection and Transmission of light at oblique Incidence
and Snell's law [9H]
Superposition of light having same frequency, Coherent and random sources, Yong's double slit
experiment: superposition by splitting of wave front, parallel film and Newton's ring: superposition by
splitting of amplitude, Michel sons and Febry perot interferro metre, spatial and temporal coherence [6H]
Fraunh offer's and Fresnel's diffraction, diffraction from single slit, double slit and grating, resolution,
dispersive power and resolution of a grating, Basics of a Laser [6H]
Lab Experiments:
1. Single slit diffraction of Laser light
2. Diffraction due to grating
3. Newton's ring
4. Dispersive power of a grating using spectrometer
5. e/m by millikan oil drop experiment
6. e/m by Thomson method method
7. Balmer series
8. Charging and discharging of a capacitor
1 Introduction to Electrodynamics: David I Griffiths
Introduction to Electrodynamics. David J Grintins Introduction to entics: Erank L. Dedrotti Lone M. Dedrotti Lone S. Dedrotti
2. Introduction to optics. Frank L. Fedrotti, Leno W. Fedrotti, Leno S. Fedrotti
3. Principies of electromagnetic: Mattnew N. U. Sadiku
4. Optics: Eugene Hecht

Subject Code:	DS1006	Course Title:	Design Fundamental 2		
Contact Hours:	L-3, T-0, P-0	Credit:	3		
Programme :	B.Des	Semester :	II		
Pre-requisites:	NIL				
Evaluation scheme	Quiz I (15%), Midterm (30	%), Quiz II (15%), End term	ı (40%)		
Understanding of chara	acteristics of different elen	nents & their inter-relation	ship with various elements and		
to the composition.			[07H Lecture,+3H Lab]		
Balance – Structural balance and visual balance. [07H Lecture,+3H Lab]					
Materials, hardware and software etc. [07H Lecture,+3H Lab]					
Symmetry, Asymmetry, Radial Balance, Golden proportion, Rules of composition, Scale & Proportion -					
Unity & Variety – Harm	ony, Rhythm, Perspective,	Emphasis, Orientation, an	d Repetition.		
[07H Lecture,+3H Lab]					
Text/Reference Books:					
1. Bervin, M. E. (1984). Design Through Discovery: The Element and Principles. Holt, Rinehart and					
Winston Washingt	on				

Winston, Washington. 2. Wong, W. (1972). Principles of two-dimensional design. John Wiley & Sons. 3. Brommer, G. F. (1994). "Collage techniques: A guide for artists and illustrators" Watson-Guptill Publications.

Subject Code:	DS1007		Introd	uction to Ergonomics in	
Contact Hours:	L-3, T-0, P-0	Course little:	Design	1	
Programme :	B.Des	Credit:	3		
Pre-requisites:	NIL	Semester :	II		
Evaluation scheme	Quiz I (15%), Midterm (30)%), Quiz II (15%), I	End term (40%)		
Genesis. Systems concepts, evolution. [07H Lecture,+3H Lab]					
Components, biomechanics, anthropometry. [07H Lecture,+3H Lab]					
Application, relation to	Application, relation to design, ergonomics of product, space and communication [07H Lecture,+3H Lab]				
Sector specific application	tion of ergonomics like cra	ft, agriculture, trar	sportation etc	[07H Lecture,+3H Lab]	
Text/Reference books:					
1. Bridger, R. (2008). Ir	ntroduction to ergonomics	. CRC Press.			
2. Chakrabarti, D. (1997). Indian anthropometric dimensions for ergonomic design practice. National					
institute of design.					
3. Sanders, M. S., & McCormick, E. J. (1987). Human factors in engineering and design McGraw-Hill Book					

Company. 4. Woodson, W. E., Tillman, B., & Tillman, P. (1992). Human factors design handbook: information and guidelines for the design of systems, facilities, equipment, and products for human use.

Subject Code:	DS1008	Course Title:	Software Skills	
Contact Hours:	L-0, T-0, P-3	Credit:	2	
Programme :	B.Des	Semester :	11	
Pre-requisites:	NIL			
Evaluation scheme	Quiz I (15%), Midterm (30	0%), Quiz II (15%), End tern	n (40%)	
Course Detail –				
Software skills related	to communication design,	specially related to some	specific software's used in	
visual prototyping, film making, creating special effects.				
Text/Reference books:				
1. Macario, J. (2008), Graphic Design Essentials: Skills, Software and Creative Solutions, Pearson				
Publications.				
2. Henry, K. (2012), Drawing for Product Designers (Portfolio Skills), Laurence King Publishing.				
3. Eissen, K. (2014), Sketching: Product Design Presentation. BIS Publishers, B.V.				

Subject Code:	DS1005	Course Title	Engineering Graphics	
Contact Hours	L-2, T-0, P-3	Credit	3	
Programme	B.Tech/B.Des	Semester	II	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (5%), Midterm (30%), Quiz II (5%), Lab (20%) End term (40%)			

Introduction [2H]
Lines Lettering Sketching Principle of Dimensioning Basic geometrical constructions Scales Engineering
Curves
Orthographic Projections [3H]
Pictorial view Multi-view Drawing Terminology First angle projection and its features. Third
angle projections and its features. Symbols, Section lines or hatching. Conversion of nictorial view into
orthographic view
Projections of Points [2H]
Location of a point. Conventional representations. Projections of a point located at different locations
Projections of Lines [3H]
Introduction Orientation of a line Projections of a line located at different locations. Projections of a line
in different angles.
Projections Planes [3H]
Introduction. Orientation of a plane, Projections of a plane located at different locations, Trace of a plane,
Plane inclined to both the reference planes.
Projection of Solids [3H]
Introduction. Classification of solids. Recommended method of labelling, Orientation of solids, Drawing
projections of a solid at different orientation of its axis, Identify visible and hidden lines.
Sections of Solids [2H]
Introduction, Terminology, Types of section planes, Section by a plane perpendicular to VP, HP and both.
Development of Surfaces [2H]
Introduction, Classification of surfaces, Methods of development, Development of prism, pyramid,
cylinders, cone, trays, Applications.
Intersection of Surfaces [4H]
Introduction, Engineering Applications, Method of determining the curves of intersection, Types of
interpenetrating solids, Intersection by prism, cylinder, pyramid and cone by another solid.
Axonometric Projection [4H]
Introduction, Principles of isometric projections, Terminology, Isometric scales, Four centre method to
draw ellipse, Dimensioning of isometric projection, Isometric view of right solids, solid containing non-
isometric lines, truncated solids, composite solids, Conversion of orthographic view into isometric views,
Oblique projections, Perspective projections.
Text/Reference books:
1. N D Bhatt Engineering Drawing, 49th edition Charoter, Publishing House, 2006.
2. B Agrawal and C M Agrawal, Engineering Drawing (2nd Ed), McGraw Hill, New Deli, 2014.
3. Dhananjay A Jolhe, Engineering drawing, TMH, 2008.
4. T E French, C J Vierck and R J Foster, Graphic Science and Design, 4th edition, McGraw Hill, 1984.
5. W J Luzadder and J M Duff, Fundamentals of Engineering Drawing, 11th edition, Prentice-Hall of India,
1995.

- 6. K Venugpoal, Engineering Drawing and Graphics, 3rd edition, New Age International, 1998.
- 7. K. Venkata Reddy, Engineering Drawing, 2nd edition, BS Publications, 2008.

Subject Code:	HS1002	Course Title	Culture and Human Values	
Contact Hours	L-2, T-2, P-0	Credit	3	
Programme	B.Tech	Semester	II	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (10%), Mid term (30%), Quiz II (10%), End term (50%)			

	A collection of Shlokas from Gita and Upanishads-	[2H]
	Pearls of Confucius-	[2H]
	Excerpts from the Arthashastra of Chanakya-	[2H]
	Poems from Tagore's Gitanjali-	[1H]
	Speech of Swami Vivekananda-	[2H]
	Excerpt from the book of APJ Abdul Kalam, 'Ignited Minds'	[2H]
	Speech 'Tryst with Destiny' of JawaharLal Nehru-	[1H]
	Excerpts from Hamlet of William Shakespeare-	[2H]
	Excerpts from Bacon's 'Of Studies'	[2H]
	Excerpts from Mahatma Gandhi's 'Simple Life'	[1H]
	The Gold Frame	[2H]
	Death is a Reality-	[1H]
	Company You Keep-	[1H]
	The Temptation of Possession-	[1H]
	Discretion is the Best Weapon-	[1H]
	Akbar and Tansen-	[1H]
	Gender Studies- Woman and Home- Rabindranath Tagore	[2H]
	Excerpts from Male Brain and Female brain of Dr.Brizendine	[2H]
Te	xt/Reference books:	
1.	"Wisdom Through the Ages- A Reader" Edited and compiled by Prof. Adhikari, Part compilat	tion on
	Gender Studies by Dr.Mamta Anand.	
2	Gitaniali- Rahindranath Tagore- Macmillian	

- 2. Gitanjali- Rabindranath Tagore- Macmillian
- 3. Complete Works William Shakespeare- Oxford Edition
- 4. Complete Works Swami Vivekananda- Advaita Trust

Year Long Courses (Common for B.Des and B.Tech)

Subject Code:		Course Title	Professional Development Course
Contact Hours	L-1, T-0, L-0,	Credit	1
Programme	B.Des/B.Tech	Semester	II
Pre-requisites	NIL		
Evaluation scheme			

Course Detail

1: <u>Personal Empowerment</u>

(A). Self-assessment to discover one's Strengths, Areas of Improvements and Personality Profile.

(B). Effective Communication Skills

- Word Power enhancement
- Attention to Detail: spacing, punctuation, spelling, and other finer aspects
- Verbal and non-verbal communication skills
- Written English with emphasis on writing grammatically correct technical/official letters, applications and reports.
- Getting rid of inhibitions and building confidence
- Assertive and Submissive communication
- Using Language for Convincing and Persuasion
- Art of asking Questions
- Practice sessions
- (C). Personal Grooming, Formal Dressing and Body Language
 - Basics of Power Dressing
 - Corporate Dress Code
 - Importance of Self Grooming and Personal Hygiene
 - Gestures & Postures, Tone of Voice, Voice Modulation
 - Workplace Etiquette & Culture

• How to introduce yourself

B.Tech Semester III

Subject Code:	CS2002	Course Title	Computer Organization and Architecture		
Contact Hours	L-3, T-0, P-0	Credit	3		
Programme	B.Tech	Semester	III		
Pre-requisites	NIL				
Evaluation scheme					
Introduction: Functiona	al components and ope	erational conc	epts of a computer, Performance of a		
computer.			[04H]		
Memory Subsystem: Se	emiconductor memories	: SRAM and D	RAM cells, Internal organization of a		
memory chip, Organiza	ation of a memory uni	t, Error corre	ction, Read-Only Memories, Interleaved		
Memories, Cache Mem	ories: Concept, Mapping	g methods, Ca	ches in commercial processors, Memory		
management unit: Con	cept of virtual memory	, Address tra	nslation, Hardware support for memory		
management, Secondar	y storage: Hard Disks, RA	ID, Optical Disl	ks, Magnetic Tape Systems. [10H]		
Input/Output Subsyster	m: Access of I/O devices	, I/O ports, I/O	control mechanisms: Program controlled		
I/O, Interrupt controlled	I/O, and DMA controlle	ed I/O, I/O Inte	erfaces: Serial port, Parallel port, PCI bus,		
SCSI bus, USB bus, FireW	/ire and InfiniBand.		[10H]		
Representation of Ins	structions: Computer A	rithmetic, Mad	chine Instructions, Operands, Instruction		
Sets: Addressing Modes	, Instruction Formats, Ins	truction set a	rchitectures: CISC and RISC architectures		
	,		[05H]		
Processing Unit: Organ	ization of a processor:	Registers, ALU	and Control Unit, Data path in a CPU,		
Instruction cycle. Instr	uction Pipelining. Orga	nization of a	control unit: Control Unit Operations.		
Hardwired control unit.	Microprogrammed contr	ol unit.	[10H]		
Introduction to Multipre	Introduction to Multiprogramming and Multiprocessing. [03H]				
Text/Reference books:			[]		
1. C. Hamacher, Z. Vrar	nesic and S. Zaky, "Comp	uter Organizati	on". Fifth Edition. McGraw-Hill. 2002.		
2. M. Morris Mano. Co	mputer System Architect	ure. Third Editi	on. Prentice Hall of India. 2007.		
3 W Stallings "Computer Organization and Architecture – Designing for Performance" Tenth					
Edition Prentice Hall of India 2015					
4 D A Patterson and I I Hennessy "Computer Organization and Design – The					
Hardware/Software Interface" Fifth Edition Morgan Kaufmann 2013					
5 L P Haves "Comput	or Architocture and Orga	nization" Thir	d Edition McGrow Hill 2002		
J. J. I. Hayes, Comput	ici Alunicetule and Olga				
Subject Code:	EC2002	Course Title	Digital Electronics and Microprocessor		
Contact Hours	L-3, T-0, L-2,		Interfacing		

•			•		
Contact Hours	L-3, T-0, L-2,		Interfacing		
Programme	B.Tech	Credit	4		
Pre-requisites	NIL	Semester	III		
Evaluation scheme	Quiz I (10%), Mid term	(25%), Quiz II (10%), End term (35%), Lab (20%)		
Learning Objective: To imp	Learning Objective: To impart basic knowledge of analysis and design of various digital electronics				
circuits and knowledge on Microprocessors and Microcontroller to solve real world problems in an					
efficient manner.					
Course Detail :					
Module 1: Number Systems and Boolean Algebra, Simplification of functions using Karnaugh map and					
Quine McCluckey Method Beeleen Function Implementation Minimization and Combinational Decim					

Quine McCluskey Method, Boolean Function Implementation, Minimization and Combinational Design, Examples of Combinational Digital Circuits, Hazards in Combinational Circuits, Hazard free realization. [10H]

Module 2: Introduction to Sequential circuits: Latches and Flip-Flops (RS, JK, D, T and Master Slave), Design

of a Clocked Flip-Flop, Flip-Flop conversion, Practical Clocking aspects concerning Flip-Flops. Counters: Design of Single Mode and Multimode Counters, Ripple Counters, Synchronous Counters, Shift Registers, Shift Register Counters and Random Sequence Generators. [12H]

Module 3: Introduction to Microprocessors: The 8085 microprocessor architecture, Programmer's model, Instruction set, instruction Format, Addressing modes, Machine cycle, Timing diagrams, and memory map, interfacing memory and I/O devices, The 8085 assembly language programming, Looping, block transfer, bit manipulation, time delay routines, stack and subroutine, I /O programming, interrupt handling. [12H]

Module 4: Interfacing of 8085: Handling of I/O ports and port programming using IN/OUT instruction, STACK handling and Signed Number Arithmetic, Interfacing instructions and control word structure for various pins like 8255, 8155, 8279,8259, etc. [08H]

Text/Reference books:

1. Digital Design by M Morris Mano and Michael D Ciletti, Pearson Prentice Hall, 4 th Edition.

2. Digital Logic Circuit Analysis and Design by - Victor P. Nelson, H. Troy Nagle, J. David Irwin & amp; Bill D. Carrol, Prentice Hall.

3. Microprocessor Architecture, Programming, and Applications with the 8085 by Ramesh Gaonkar, Penram International Publishing; 6th edition.

4. Microprocessors and interfacing by Douglas Hall, McGraw Hill Education; 3rd edition.

Subject Code:	ME2002	Course Title	Manufacturing Proc	ress
Contact Hours	1-3 T-0 P-2	Credit	4	
Programme	B.Tech/B.Des	Semester		
Pre-requisites	NIL			
Evaluation scheme	Quiz I (10%), Mid term	(20%), Quiz II (10%	5), End term (40%), lab (20%)
Introduction: Introduction	on to Manufacturing, His	torical Perspective	, Importance, etc Mechanic	al
Properties In Design & N	lanufacturing.			[02H]
Casting: Fundamentals o	f casting process, feature	es of casting, Casti	ng Processes, Classification,	
Significances.		-	-	[03H]
Metal Forming: Hot & Co	old Working, Bulk Deforn	nation processes I	ike Rolling, Forging, Extrusio	n and
Drawing, Sheet metal for	rming (Shearing & Drawi	ng operation).		[03H]
Machining: Machining, N	Aechanism of machining	, Chip Formation,	Temperature, Tool Wear, To	ol Life,
Machining Processes, Bri	ef introduction to Single	point and multi-p	oint cutting operations. Intr	oduction to
Grinding & Finishing.	U		0.	[03H]
Metal Joining: Fundame	ntals of Welding, Classifi	cation of welding,	processes, Introduction to C	Gas & Are
Welding, Ultrasonic Weld	ding, Friction Welding, Re	esistance welding,	Brazing, Soldering and Adhe	esive
bonding.	0, 0,	C,	0, 0	[03H]
Polymers: Polymer prod	ucts manufacturing, Extr	usion, Injection m	olding, Blow molding , Therr	noforming,
Compression molding an	d Transfer Molding.			[03H]
Modern Manufacturing	Processes: Introduction	to rapid prototypi	ng, classification and various	s RP
processes. Introduction t	o various unconvention	al machining proce	esses and their classification	
Introduction to automat	ion, Flexible manufacturi	ing systems and Cl	NC.	[06H]
Manufacturing of Electronic Device: Manufacturing of semiconductor devices and silicon wafers. Devices				
fabrication Techniques, Surface Films Depositions, Lithography, Etching, Processes Integration and				
Packaging. Printed circui	t boards and Techniques	for micro / nano l	abrication.	[05H]

Lab Experiments:

- 1. Practice on various Measuring instruments
- 2. To performed joining of two thick MS plates by V groove Butt Joint using arc welding (MMAW)
- 3. To performed joining of two thin MS plates by Lap Joint using oxy acetylene gas welding
- 4. To learn and practice turning, parting operation on lathe machine
- 5. To perform grooving, threading and knurling operations on lathe machine
- 6. To perform step and taper turning operation on lathe machine
- 7. To learn operations of Vertical Milling M/C and perform a practice job like T Slot Cutting.
- 8. To learn operations on horizontal milling machine and prepare a Spur Gear
- 9. To learn various fitting operations like Drilling, Taping, Radios, Square Cut in MS metal working.
- 10. To learn various sheet metal operations of GI Sheet and prepare a funnel cone by using GI Sheet.
- 11. Process demonstration of Ultrasonic Plastic & Metal Welding
- 12. Process demonstration of Tool Wear Measurement

Text/Reference books:

- 1. SeropeKalpakjian, Steven R Schmid, "Manufacturing Engineering and Technology", Pearson Education.
- 2. Callister, "Materials Science and Engineering" John Wiley & Sons Inc.
- 3. Smith William. "Foundation of Materials Science and Engineering", McGrwa Hill, 4th Edition.
- 4. V. Raghwan,"Materials Science and Engineering" 5th Edition.
- 5. Mikel P. Groover, "Fundamentals of Modern Manufacturing", John Wiley & Sons inc.
- 6. John A Schey, "Introduction to Manufacturing Processes", McGraw Hill 3rd Edition.

Subject Code:	CS2003	Course Title	Database Management System
Contact Hours	L-3, T-0, P-2	Credit	4
Programme	B.Tech	Semester	111
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Mid term (2	20%), Quiz II (10%), Er	nd term (40%), lab (20%)
Introduction of DBMS:	Evolution of Database M	lanagement Systems,	Concept of data models, database
system architecture.			[05H]
Data Models: ER Mo	odel: ER Schema, entit	y-sets, ER diagram,	Specialization & generalization,
Aggregation;			
Relational Model: Relational	tions, Keys, Constraints; E	R Schema to Relation	nal model; Relational algebra; tuple
and domain relational c	alculus.		[10H]
Structured Query Lang	uage: SQL data types, Typ	pes of SQL command	s, SQL operators, Tables, views and
indexes, Queries and	sub queries, Aggregate	functions, assertion,	trigger, integrity & SQL, security
implementation with S	SQL, Embedded SQL. (W	ill be covered in the	e Lab hours. Lab will also include
exercises on developme	ent of a complete databas	e based application)	[10H]
Database Design: Func	tional Dependencies, dec	composition, canonica	al cover, Normalization (1NF- 5NF),
Dependency preservation	on, multivalued depender	ncies, Join dependenc	ies. [07H]
Transaction Managem	ent: Transaction concept	t, ACID properties, S	Serializability, Concurrency control
techniques, Recovery co	oncepts and techniques.		[05H]
Storage Structure & Fi	le Organization: Indexing	, ordered indices: B+	tree and B tree index files,
Introduction to Client Se	erver and Distributed Data	abases	[05H]
ext/Reference books:			
1. R. Elmasri, S. B. Nava	athe, D. V.L.N. Somayajul	u, S. K. Gupta, "Fund	amentals of Database Systems," 7 th
edition, Pearson Educ	cation, 2015.		

Subject Code:	EC203a	Course Title	Principle	of	Analog
			Communications	5	
Contact Hours	L-2, T-0, L-2	Credit	2		
Programme	B.Tech	Semester	111		
Pre-requisites	NIL				
Evaluation scheme	Evaluation-I: 50%. Evaluation-II 50%				

Learning Objective: In this course undergraduate students will learn about the signal, system, modulation and transmission of signal using different techniques such as amplitude and angle modulation.

Course Detail :

Introduction to Communication Systems and review of signal & amp; system: Communication network and channel, Difference between Analog and Digital type of signal and Communication, Classification of Signals and systems, Fourier series, Fourier transform and its Properties and examples, Impulse Response, and Transfer Function.

Amplitude Modulation: General amplitude Modulation, Double Sideband (DSB) Modulation, Single-Sideband and Vestigial-Sideband Modulations. Implementation and generation techniques of AM Modulators and demodulators.

Angle Modulation: Basic definition, Phase modulation, frequency modulation, relationship between frequency and phase modulation, bandwidth of power and spectrum of FM signal, Narrowband and wideband frequency modulation, Transmission bandwidth of FM signal, Generation and detection techniques of angle modulation.

Text books:

1. Haykin, S., "Communication System", Fourth Edition, Wiley and Sons, 2005.

2. Lathi, B.P., "Modern Digital and Analog Communication System", Oxford University Press, 2006.

Reference books:

1. John G. Proakis and Masoud Salehi, "Communication System Engineering", Prentice Hall, 2006.

2. Taub and Schilling, "Principles of Communication System", Tata McGraw-Hill, 1991.

Subject Code:	EC203b	Course Title	Network Theory (Analysis and	
Contact Hours	L-2, T-0, P-0		Synthesis)	
Programme	B.Tech	Credit	2	
Pre-requisites	Fundamentals of Electrical	Semester	III	
	Engineering			
Evaluation scheme	Quiz Exam (40%), Assignment (10%), End-Term (50%)			

Learning Objective:

• To make the students capable of analyzing any given electrical network.

- To make the students learn how to synthesize an electrical network from a given impedance/ admittance function.
- To develop hierarchical thinking to see more complex systems as a generalization of simple circuits and techniques.

Course Detail :

Introduction: Network elements, formulation of network equation, network representations, Transient analysis in RL, RC, and RLC networks with DC and AC excitation, response to step, impulse and ramp inputs, coupled circuits: self-inductance and mutual inductance, coefficient of coupling, and dot convention. [09H]

Two-Port Networks: Characteristics of linear time-invariant networks, network parameters (short circuit admittance parameters, open circuit impedance parameters, transmission parameters, image parameters, and hybrid parameters), interconnections of networks (tee and pie circuit representation, cascade, and parallel connections). **[08H]**

Graph theory: Network graphs, tree, branches, chords, fundamental cut-sets and loops, incidence, tieset, cut-set matrices, and their applications in network analysis. [05H]

Network Synthesis: Positive real function, physical realizability conditions, Hurwitz property, positive

realness, properties of positive real functions, synthesis of R-L, R-C, and L-C driving point functions, Foster and Cauer forms, introduction to two-port network synthesis, and basics of filter design. [06H]

Text/Reference books:

- 1. M.E. Van Valkenburg, *Network Analysis*, Prentice-Hall, 2006.
- 2. M.E. Van Valkenburg, *Network Synthesis*, Prentice Hall, 2007.
- 3. F. F. Kuo, Network Analysis and Synthesis, John Wiley and Sons, 1966.
- 4. S.Seshu and M.B. Reed, *Linear Graphs and Electrical Networks*, Addison Wesley, 1961.
- 5. N. Balabanian and T.A. Bickart, *Linear Network Theory: Analysis, Properties, Design and Synthesis*, Matrix Publishers, Inc. 1981.
- 6. L.O. Chua, C.A. Desoer, E.S. Kuh, *Linear and Nonlinear Circuits*, McGraw Hill, 1987.
- 7. W. H. Hayt Jr., J.E. Kemmerly, *Engineering Circuit Analysis*, McGraw-Hill, 1971.
- 8. J. A. Edminister, and M. Maqvi, Theory and Problems of Electric Circuits, Schaum's Outline Series, TMH.

Subject Code:	ME2003	Course Title	Solid Mechanics
Contact Hours	L-2, T-2, P-2	Credit	4
Programme	B.Tech	Semester	111
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Midterm (25%), Quiz II (15%), Assignment (10%), End term (40%)		

Stress & strain: Tension, compression, shearing stress & strain; Poisson's ratio: stress-strain relationship, Hooke's law; elastic constants and their relations, stress-strain curves, anisotropy & orthotropy, thermal stresses, composite bars. [08H]

Members subjected to flexural loads: Theory of simple bending, bending moment and shear force diagrams, relationship between bending moment, shear force and load, flexural relation, bending stresses, section modulus and transverse shear stress distribution. [08H]

Deflection of Beams: Differential Equations of the Deflection Curve, Deflections by Integration of the Bending-Moment Equation, Deflections by Integration of the Shear-Force and Load Equations, Method of Superposition, Moment-Area Method, Discontinuity Functions, Use of Discontinuity Functions in Determining Beam Deflections. [08H]

Principal Stress and Strain: Principal planes, stresses & strains, maximum normal & shear stresses, Mohr's circle of stress & strain. [05H]

Torsion: Torsional shear stress in solid, hollow and stepped circular shafts, angular deflection and power transmission capacity. [05H]

Theories of Elastic Failures: The necessity for a theory, different theories, significance and comparison. [04H]

Buckling: Buckling and Stability, Columns with Pinned Ends, Columns with Other Support Conditions. [04H]

Text/Reference books:

- 1. Beer and Johnston , "Mechanics of Materials", 5th Edition, McGraw Hill
- James M. Gere, "Mechanics of Materials", 6thEdition, Thomson Learning Inc.
 Shames and Pitarresi, Introduction to Solid Mechanics, PHI

Subject Code:	SM2003	Course Title	Solid Mechanics + Design	of	
Contact Hours	L-3,T-1,P-2		Mechanical Components		
Programme	B.Tech	Credit	4		
Pre-requisites	NIL	Semester			
Evaluation scheme	20% Assignment/ Quiz,	20% Mid Sem, 40% End T	erm, 20% Lab+ Project		
Learning Objective: This c	course will introduce con	cepts of stress and strain	and designing of		
mechanical components					
Course Detail:			_		
Introduction to Design:			l	<u>02</u> HJ	
Design requirements, fact	or of safety, steps in me	chanical engineering desig	in .		
Stress & strain :]	[06H]	
Tension, compression, she	earing stress & amp; strai	n; Poisson's ratio stress-si	train relationship. Hooke's l	law,	
elastic constants and their	r relations, stress-strain o	curves, anisotropy & amp;	orthotropy, thermal stress	es,	
composite bars					
Members subjected to fle	xural loads:	C 11 1 1	L	<u>06</u> HJ	
i neory of simple bending,	, bending moment and sr	hear force diagrams, relat	ionship between bending		
moment, snear force and	load, flexural relation be	nding stresses section mo	dulus and transverse snear	r	
stress distribution				[0(1)]	
Design for Simple Stress :	alula Jaint Dasian of Dalta	d lainte and lanana. Daaim	l af la af an sin a	[06H]	
Design of Cotter and Knuc	Kie Joint Design of Boite	a joints and levers. Desigr	i of leaf spring	04111	
Principal Stress and Strain	i. Roman strains, movimum	normal Qampi choor stre] Anno Mahris sirala af stras	04HJ	
etroin	& strains, maximum	i normai & shear stre	sses, won's circle of stress	SQ	
Stidill Torsion and combined loa	ding		ı	1001	
Torsional choar stross in s	olid hollow and stannad	circular chafte, angular d	l aflaction and nower	TOUL	
transmission canacity Dos	vign of Shafts, kovs and C	circular silarts, aliguiar ut	ing		
Theories of Elastic Failure	ign of Sharts, keys and C	Supling Helical torsion spi	"''B	ัดงมา	
Theories of Elastic Failures: [04]					
Design for variable loading	י, מוויברבות נווכטווכ <i>ג,</i> גופווו זסי		I	[04н]	
Concept of variable loadin	Concent of variable loading, designing component under variable loading				
Lah experiments	18, designing component				
1 To perform tensile test (on steel and cast iron and	compare the results			
2. To Perform compressio	in and shear test on steel	bar and determine comp	ressive strength, shear stre	ngth	
and bending strength of t	he bar				
3. To perform bending tes	st on a beam.				
4. To determine the bend	ing stress & strain in a ca	ntilever beam, using resis	tance strain gauges.		
5.To determine the Brinel	l Hardness/ Rockwell Ha	dness number for the giv	en specimen		
6. To determine the energ	zy absorbed by the given	specimen by Izod impact	Test and Charpy Impact Te	st.	
7. To study the effect of c	antilever loading on stan	dard rotating bending spe	cimen, also study the		
characteristics of S-N curv	e for ferrous materials.	0 0 1			
8. To perform torsion test	: on a wire.				
9. 12 Project work					
Text Books:					
1. Popov EP, Engineering	Mechanics of Solid. Pears	son Ed			
2. Shames and Pitarresi, Introduction to Solid Mechanics, PHI					
3. Shigley J. "Mechanical Engineering Design"TMH, 6th Edition 2003					
Bhandari V., "Design of Machine Elements", TMH, 2nd Edition, 2007					
5. PSG Data Handbook					
Reference Books:					
1 Deen Johnson and Devi	alf Maabautaa af Mataut				

1. Beer, Johnson and Dewolf, Mechanics of Materials", TMH

2. Kazimi, Solid Mechanics, TMH

- 3. Nash, Theory and problems of Strength of Materials (Schaum's Outline Series), TMH
- 4. Sarkar B., Strength of Materials, TMH
- 5. Hibbler R.C. Mechanics of Materials, Pearson
- 6. Timoshenko and Young, Elements of Strength of Materials, MGH
- 7. Crandall Dahl and Lardner, An Introduction to the Mechanics of Solids, MGH
- 8. Juvinall RC and Marshek K.M. "Fundamentals

Subject Code:	EC204a	Course Title	Electronics Devices and Circuits
Contact Hours	L-2, T-0, P-0	Credit	2
Programme	B.Tech	Semester	III
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Mid term (20%), Quiz II (10%), End term (40%), lab (20%)		

Review of theory of semiconductor, PN junction diode theory, contact potential and current components, energy band diagram for PN Junction, Diode I-V Characteristics, breakdown voltage and leakage current Diode applications rectifier half wave and full wave with filter design, clipping and clamping circuit analysis and design, Special purpose diodes zener diode and its application for regulator, varactor diode, PIN diode, tunnel diode, photodiode, Schottkey barrier diode and LED. [10H]

Junction field effect transistor (JFET), device structure and physical operation, IV characteristics, nchannel and p-channel JFET, Biasing and small signal analysis and JEFT applications as voltage amplifier. MOSFET basics, the inversion cannel formation, the derivation of the IV characterises, triode region and saturation region operation, body effect and channel length modulation, Modeling of the MOSFET, Basing, Common source, common drain, and common gate configurations. MOSFET as an amplifier and as a Switch, Single stage MOS Amplifier, MOSFET small signal model for analysis of single stage amplifier, high frequency MOSFET model and frequency response, Current mirror, differential amplifier using MOSFET. [15H]

Operation of BJT, Current Components, currents gains α and β , BJT Biasing and Q point & Regions of Operation, Bias Stability, Transistor in CB, CE, CC configuration, Transistor leakage current I_{CBO} and I_{CEO} and breakdowns.Introduction to amplifiers, RC Coupled amplifiers, frequency response, Transistor re Model, Transistor H parameter, BJT Small Signal Analysis, BJT and FET High frequency modelling, Transistor as a switch and power dissipation in the transistor. [10H]

Feedback Amplifiers, Oscillators (Different types), Differential Amplifiers, power amplifier, OperationalAmplifiers and its Applications. Logic Families using BJT and MOSFET for Digital Applications.[07H]

Laboratory Experiments

- 1. Introduction to laboratory equipment
- 2. Clipping and Clamping Circuits Design and analysis
- 3. Rectifier full wave with filter design
- 4. Zerner regulator design and analysis
- 5. JFET characteristics and Baising
- 6. BJT as switch performance and measurments and verification by simulations tools (pSpice)
- 7. RC coupled amplifier design and analysis small sigal and high frequency Lab and pSpice
- 8. MOSFET characterstics and various baising
- 9. Single stage MOS Amplifier CS, CD and CG and Cascode stages
- 10. Current mirror using BJT and MOSFET

Text/Reference books:

- 1. Electronic Circuits Analysis and Design, Donald Neamen.
- 2. Microelectronics Circuits 5th Edition BySedra and Smith Oxford Publication
- 3. Electronic Devices and Circuits David A Bell. Oxford Publication
- 4. Integrated Electronics: Analog and Digital Circuits and Systems, Millman Jacob and Halkias, Christos C. ,McGraw Hill 2004
- 5. Electronics Device and Circuit TheoryBoylestad,Robert L. and NashelskyLouis,Ninth Edition, Printice Hall of India 2005

Subject Code:	EC204b	Course Title	Instrumentation and Measurement
Contact Hours	L-2, T-0, P-0	Credit	2
Programme	B.Tech	Semester	III
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Mid term (20%), Quiz II (10%), End term (40%), lab (20%)		

Course Detail:

Basic terminologies (range, span, settling time dead zone, input impedance), Static and Dynamic characteristics, first order and second order instruments with step, ramp and sinusoidal input, output characteristics. [05H]

Strain gauge, derivation of gauge factor, strain gauge rosette, unbalanced wheatstone bridge, AC bridges for capacitance, inductance, phase and frequency measurement. Ultrasonic and its applications for measurement of flow, displacement and non-destructive testing. [05H]

LVDT, phase compensation, phase sensitive demodulation, thermistor and its linearization, RTD, its construction, three wire and four wire method Muller bridge, Thermocouple, their relative comparison, cold junction compensation using AD590, grounded thermocouple, potentiometer as displacement sensor, Capacitance as displacement and level transducer, push pull arrangement, Pressure transducer [Bourdon gauge, diaphragm gauge (metal and semiconductor) etc]. [08H]

Signal Conditioning Circuits, Quantization, Resolution, Sample and Hold Circuits, Analog (Successive Approximation, Ramp, and Flash) and Digital (R-2R, Binary weighted) Converters. [04H]

Text/Reference books:

- 1. Measurement Systems Application and Design, Ernest O. Doebelin, McGraw-Hill
- 2. Principles of Industrial Instrumentation, 2e. Front Cover. Patranabis. Tata McGraw-Hill
- 3. Clarence W de Silva, MECHATRONICS An Integrated Approach, CRC Press
- 4. Alan S Morris, Measurement and Instrumentation Principles, Butterworth-Heinemann

Subject Code:	ME2004	Course Title	Engineering Thermodynamics			
Contact Hours	L-3, T-2, P-0	Credit	4			
Programme	B.Tech	Semester	III			
Pre-requisites	NIL					
Evaluation scheme	Quiz I (10%), Quiz II (10%) term (40%)), Midterm (20%), Qı	uiz III (10%), Assignment (10%), End			
Course Detail :						
Introduction to Thermodynamics, Systems, Properties, State of a system. Thermodynamic Equilibrium,						
Processes; Zeroth law of thermodynamics, Ideal Gas, Work and Heat Transfer, Principles of Energy						
Conversion, Energy Int	teractions, First Law, Energ	y Transport Mechan	Conversion, Energy Interactions, First Law, Energy Transport Mechanisms, Point and Path Function,			

Internal Energy. [12]	: H]
First Law applied to various Processes; Constant Volume, Constant Pressure, Isothermal, Reversible-	
adiabatic, etc.; Applications of First Law to Flow and Non-flow Processes. [12]	2 H]
Second Law of Thermodynamics, Kelvin-Planck and Clausius statements; Carnot theorem; Available	
Energy, Entropy, Heat Engine, Heat Pump. [12]	2 H]
Applications: Gas Power Cycles, Otto, Diesel and Brayton; Vapour Power Cycles, Rankine Cycle, Power	
Plant Operation; Refrigeration Cycles. [12]	: H]
Text/Reference books:	
1. Fundamentals of Thermodynamics by Sonntag (Wiley)	
2. Fundamentals of Engineering Thermodynamics by Moran and Shapiro (Wiley)	
3. Thermodynamics: An Engineering Approach by Cengel and Boles (TMH)	

4. Engineering Thermodynamics by P K Nag (TMH)

Subject Code:	NS2001	Course Title	Biology for Engineers
Contact Hours	L-2, T-0, P-0	Credit	2
Programme	B.Tech	Semester	III
Pre-requisites	NIL		
Evaluation scheme			

Course Detail :

Cells, Cellular Organelles, Nucleic Acids (DNA, RNA structure and function), Proteins- Different levels of structures, Folding and mis-folding, Protein Purification techniques; Enzymes, Carbohydrates, Lipids & amp; Lipid membranes, Drug Discovery. Topics would emphasize importance of biomolecule vis-à-vis numerous every day applications.

Text/Reference books:

- 1. Berg, J. M., Tymoczko, J.L., and Stryer, L., Biochemistry, W.H. Freeman & amp; Company, 6th edition, 2006.
- 2. Alberts, B., Alexander, J., Lewis, J., Raff, M., Roberts, K., Walter, P., Molecular Biology of the Cell, 6th edition, Garland Science Publishing, 2007.
- 3. Donald Voet, Judith G. Voet, Charlotte W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level, Publisher : Wiley; 5th edition (29 February 2016)

IT Workhop I

Subject Code:	IT2E01	Course Title	Matlab and Simulink, Pspice	
Contact Hours	L-0, T-0, P-2	Credit	2	
Programme	B.Tech	Semester	111	
Pre-requisites	NIL			
Evaluation scheme	Lab Assignments (20%), Quiz (20%) End-Term (60%)			

Learning Objective: Learning the software tools MATLAB, Simulink and Pspice for solving and applying on electronic circuits.

Course Detail :

MATLAB

Introduction of MATLAB,

Basic Operation of Differentiation, Integration, Linear Equations, matrix operations to solve system of linear equations, Convolution with practical application

Plotting Functions: Plot subplot, Histogram, bar chart, curve fitting

Logical Operators and Functions, Graphical User Interface

Signals processing tool box, Impulse, step, and response of LTI systems.

Fourier transform and Laplace Transform

Simulink

Building simple Simulink simulations.

Running Simulink simulation to predict a system's behaviour.

PSpice

Introduction to PSpice and components, Simple Dependent Sources, Transient Analysis, Steady State AC Analysis with the transistor, Simulation of Transistor as an amplifier in CE,CB and CC mode, Frequency Response, Special Sources, Pulse Sources, SIN Sources, Voltage & Current Controlled Switches, Subcircuits with Op-amp examples with PSpice,

Text/Reference books:

Subiect Code	DS2005	Course Title	Studies in Form	
Contact Hours	L-2, T-0, P-2	Credit	3	
Programme	B.Des	Semester	III	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Midterm (3)%), Quiz II (15%), End 1	erm (40%)	
Simple geometric form, o	complex forms, nature and	form, human figure, sp	bace and form, color and form	
etc.			[07H Lecture,+3H Lab]	
To appreciate and articulate the language of form, to sensitize students towards manipulation of forms				
in 2D and 3D also Form integration and transition. [07H Lecture,+3H Lab]				
Experiment with different aspect of forms; understand nature and structure of form, basic techniques of				
Form.			[07H Lecture,+3H Lab]	
Manipulation and thei	r applications to gener	ate Forms and Sha	pes with desirable objects.	
			[07H Lecture,+3H Lab]	
Text/Reference books:				

1. Hann, M. (2013). Structure and Form in Design: Critical Ideas for Creative Practice. A&C Black.

2. Warell, A. (2001). Design Syntactics: A functional approach to visual product form Theory, Models, and Methods. Chalmers University of Technology.

3. Boden, M. A. (2012). Creativity and art: three roads to surprise.

Subject Code	DS2006	Course Title	Industrial Design 1
Contact Hours	L-2, T-0, P-2	Credit	3
Programme	B.Des	Semester	III
Pre-requisites	NIL		

Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%)				
Simple products, product color and aesthetics. [07H Lecture,+3H La					
Simple products, Desi	Simple products, Design from consumers point of view, product language. [07H Lecture,+3H La				
Aesthetic aspect, fund	Aesthetic aspect, functionality, product semantic, meaning of sign and symbol, product analysis, product				
form and psychology. [07H Lecture,+3H I					
White goods, medical products, complex products etc.[07H Lecture,+3H La					

Text/Reference books:

- 1. Heufler, G. (2004). Design basics. NiggliVerlag.
- 2. Bramston, D. (2010). Basics Product Design 03: Visual Conversations (Vol. 3). AVA Publishing.
- 3. Bramston, D. (2008). Basics Product Design 01: Idea Searching (Vol. 1). AVA Publishing.
- 4. Cuffaro, D&Zaksenberg, I (2013) The Industrial Design Reference & Specification Book.

Subject Code	DS2007	Course Title	Communication Design 1	
Contact Hours	L-2, T-0, P-2	Credit	3	
Programme	B.Des	Semester	111	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End	term (40%)	
Communication basi	cs, semiotics, semantics	, and typography and	d: Introduction to Communication	
Design.			[07H Lecture,+3H Lab]	
Effective Communica	tion, Human Perceptior	, Aesthetics, Emotion	and Subjectivity, Visual Perception	
and Cognition: Huma	n Eye, Optical Illusion, Co	lor Perception, Depth P	erception, Motion Perception.	
			[07H Lecture,+3H Lab]	
Visual Language: Sem	niotics - Semantics, Synta	actic, Pragmatics, Sign -	Design of Icon, Index, Symbol and	
Logo. Visual Hierarch	ny: Visual Focal, Visual (Order, Eye Movement,	Visual Flow and Continuity, Visual	
Composition			[07H Lecture,+3H Lab]	
Information Design:	Information Chunking,	Grids, Visual Abstrac	ction of Quantitative information,	
Application of Gestalt	: Laws of grouping, Inforr	nation Graphics.	[07H Lecture,+3H Lab]	
Text/Reference books:				
1. Malamed, C. (201	1). Visual language for	designers: principles	for creating graphics that people	
understand. Rockport Pub.				
2. Arnheim, R. (1969). Visual thinking. Univ of California Press.				
3. Bertin, J. (1981). Graphics and graphic information processing. Walter de Gruyter.				
4. Barry, A. M. (1997). Visual intelligence: Perception, image, and manipulation in visual				
communication.SUNY Press				
5. Meirelles, I. (2013). Design for information: an introduction to the histories, theories, and best				
practices behind effective information visualizations. Rockport publishers.				

6. Krum, R. (2013). Cool infographics: Effective communication with data visualization and design. John Wiley & Sons.

OE1 Choose any one course from below electives

Subject Code:	OE2E01	Course Title	Sensors and Actuators
Contact Hours	L-0, T-0, P-0	Credit	3
Programme	B.Tech/B.Des	Semester	111
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Mid term (20%), Quiz II (10%), End term (30%) Lab (30%)		
1 Introduction Classification of concern and actuation and actuation and actuation structures			

1. Introduction: Classification of sensors and actuators, sensing and actuating strategies, general requirements for interfacing and actuation, sensing, transduction, actuation.
 [02H]

 2. Performance Characteristics of Sensors and Actuators: Input/output characteristics, accuracy, errors,

repeatability, sensitivity analysis, hysteresis, Nonlinearity, saturation, frequency response, dynamic characteristics, calibration, resolution, excitation, impedance, applications. [03H]

3. Temperature Sensors and Thermal Actuators: Thermoresistive sensors: Thermistors, Resistance temperature sensors, Silicon resistive sensors, Thermoelectric sensors, PN junction temperature sensors, Optical and acoustic temperature sensor. [03H]

4. Optical sensors: Photodiodes, phototransistors and photoresistors based sensors, Photomultipliers, light- to-light detectors, infrared sensors (thermal, PIR, AFIR, thermopiles), CCD sensors and detectors.

[03H] 5. Electric and Magnetic Sensors and Actuators: Motors as actuators (linear, rotational, stepping motors), magnetic valves, inductive sensors (eddy current, LVDT, RVDT, Proximity), Hall Effect sensors, Magnetoresistive sensors, Magnetostrictive sensors and actuators, Magnetometers (fluxgate, search-coil, Squid), Voice coil actuators (speakers and speaker-like actuators), Bolometers (microwaves). [04H] 6. Mechanical Sensors and Actuators: Accelerometers (capacitive, piezoelectric, piezoresistive, thermal), Force sensors (strain gauges, tactile sensors), Pressure sensors (semiconductor, piezoresistive, capacitive, VRP), Gyroscopes (mechanical, optical, fiber-optics). [05H]

7. Acoustic Sensors and Actuators: Ultrasonic sensors (piezoelectric, electromagnetic), Piezoelectric actuators, Piezoelectric Resonators, Microphones, hydrophones, speakers, buzzers. [03H]

8. MEMs and Smart Sensors: Micro-Electro-Mechanical (MEMs) Sensors and Actuators, Smart sensors, ASIC based sensors, Wireless Sensors and Issues Associated with Wireless Sensors, Sensor Arrays). [03H]
 9. Interfacing Methods and Circuits: Amplifiers: operational amplifiers, power amplifiers, A/D and D/A converters, bridge circuits, interfacing to microprocessors, data transmission, excitation methods and circuits, Power requirements, signal translation, isolation, noise, interference, compensation (Temperature, drift, etc.). [02H]

Lab work

- 1. Experiment on Strain Gauge.
- 2. Experiment on LVDT.
- 3. Digital-to-Analog converter using R-2R & Binary.
- 4. Experiment on Optical Transducer.
- 5. Study of H-Bridge & design using Transistors.
- 6. Study of PWM (Pulse Width Modulation) & its use to control the speed of a DC Motor.
- 7. Study of Stepper Motor & its control circuit.
- 8. Study of Servo Motor & its control circuit.
- 9. Assembly of Speaker (Study of Voice Coil Actuator).
- 10. Experiment on Basic Op-Amp Circuit & its use as comparator.
- 11. Demonstration of Piezoelectric Actuation.

12. Construction of Project.

Text/Reference books:

1. Ida, N., Sensors, Actuators, and their Interfaces; Scitech Publishing

2. deSilva, Sensors and Actuators: Control System Instrumentation, CRC Press

Subject Code:	OE2E02	Course Title	Probability and Random Processes	
Contact Hours	L-0, T-0, P-0	Credit	3	
Programme	B.Tech/B.Des	Semester	111	
Pre-requisites	NIL			
Evaluation scheme	tion scheme 10 % (Quiz 1), 20% Mid Sem, 10 % (Quiz 2), 40% End Sem, 20% Project			
Learning Objective: Basics of probability to design and study probabilistic models				

Course Detail :

Introduction to probability: mathematical background - sets, set operations, sigma and Borel fields; classical, relative-frequency and axiomatic definitions of probability; conditional probability, independence, total probability, Bayes' rule; repeated trials; random variables: cumulative distribution function, continuous, discrete and mixed random variables, probability mass function, probability density functions. [10H]

Functions of a random variable; expectation - mean, variance and moments; characteristic and momentgenerating functions; Chebyshev, Markov and Chernoff bounds; special random variables-Bernoulli, binomial, Poisson, uniform, Gaussian and Rayleigh; joint distribution and density functions; Bayes' rule for continuous and mixed random variables; joint moments, conditional expectation. [10H]

Covariance and correlation- independent, uncorrelated and orthogonal random variables; function of two random variables; sum of two independent random variables; random vector- mean vector and covariance matrix, multivariate Gaussian distribution; sequence of random variables: almost sure and mean-square convergences, convergences in probability and in distribution, laws of large numbers, central limit theorem; elements of estimation theory- linear minimum mean-square error and orthogonality principle. **[10H]**

Random process: discrete and continuous time processes; probabilistic structure of a random process; mean, autocorrelation and autocovariance functions; stationarity- strict-sense stationary and wide-sense stationary (WSS) processes: autocorrelation and cross-correlation functions; time averages and ergodicity; spectral representation of a real WSS process-power spectral density, cross-power spectral density, linear time-invariant systems with WSS process as an input- time and frequency domain analyses; spectral factorization theorem; examples of random processes: white noise, Gaussian, Poisson and Markov processes. **[10H]**

Text books:

1. Probability & Random Processes by Grimmett & Stirzaker Fourth Edition, 2018.

2. Adventures in Stochastic Processes by Resnick Springer, 2013.

Reference books:

1. An Introduction to Stochastic Modeling by Taylor and Karlin, third edition Academic Press, 2011.

Subject Code:	OE2N05	Course Title	Complex and Linear Algebra
Contact Hours	L-0, T-0, P-0	Credit	3
Programme	B.Tech/B.Des	Semester	III
Pre-requisites	NIL		

Evaluation scheme Mid-Sem-40% End-Sem-60%

Learning Objective: Intended to familiarize the reader with the basic concepts, principles and methods of Complex analysis and Linear Algebra.

Course Detail : Review of complex numbers and operations, Functions of a Complex Variable, Analytical functions, Cauchy-Reimann equations, Elementary functions, Confonnal mapping.

Contour integrals, Cauchy's Theorem, Residue Theorem, Power series, Taylor and Laurent series, zeroes, poles, essential singularities, evaluation of integrals.

Review of Matrices Algebra, Solution of Matrices Equation, Row reduced Echelon form, Determinant, Kramer's rule.

Vector spaces, subspaces, basis, Orthogonal basis, Gram-Schmidt orthogonalization, Linear Operators, Matrix representation, Rank, Solution of Linear equations using matrices (invertibility, null space etc.), Eigenvalues, eigenvectors, diagonalisability, Symmetric systems, Positive definite.

Text/Reference books:

- 1. Kreysig E., "Advanced Engineering Mathematics", Wiley, 9th ed, 2006.
- 2. Brown and Churchil, Complex Variables and Applications, McGraw Hill, 7th ed, 2014
- 3. Hoffman Kunze, Linear Algebra, 2nd ed, Prentice Hall, Inc.
- 4. S. Ponnusamy, Foundation of Complex Analysis, 2nd Ed,Narosa

Subject Code:	OE2N06	Course Title	Material Science
Contact Hours	L-0, T-0, P-0	Credit	3
Programme	B.Tech/B.Des	Semester	111
Pre-requisites	NIL		
Evaluation scheme	Quiz I (10%), Mid term (20%), Quiz II (10%), End term (40%), lab (20%)		

1. Overview of Materials and their applications. Bonding in materials. Crystal systems, packing fraction, nearest neighbour, concept of Bravais Lattice and unit cell. Miller indices in crystalline materials. Defects in crystalline materials, single crystals, poly-crystals and amorphous materials. [12H]

2. Band theory of solids, conductors, semiconductors and insulators, intrinsic and extrinsic semiconductors, electrical conduction, effect of temperature on conductivity. Heat capacity and thermal conductivity. Stress-strain diagram, elastic and plastic deformation, yield strength, tensile strength, elongation, modulus of elasticity, ductile and brittle fracture. [10H]

3. Diffusion in solids, Fick's laws and technological application of diffusion. Phase Diagrams of engineering materials; Solidification; Diffusion assisted and diffusion less solid-state phase transformations, Applications and Properties of Ceramic, Polymers and also of their Composite Materials.

[10L]

4. Magnetic materials and their properties, magnetic hysterisis. Elements of superconductivity, Meissener's effect, type-I, type-II semiconductors, BCS Theory. Introduction to nanotechnology, 0D, 1D and 2-D materials, nanoribbons. Advance applications of nanomaterials including spintronics. **[10H]**

Text/Reference books:

1. Callister, "Materials Science and Engineering" Wiley.

- 2. Smith, William, "Foundations of Materials Science And Engineering", Mc Graw Hill. 3. V. Raghvan, "Materials Science and Engineering".
- 3. Poole and Owens "Introduction to nanotechnology", Wiley.

Subject Code:	OE2D11	Course Title	Design Thinking		
Contact Hours	L-2, T-0, P-2	Credit	3		
Programme	B.Tech/B.Des	Semester	111		
Pre-requisites	NIL				
Evaluation scheme					
Course Detail :					
1. Design history, how dea	sign thinking is different fr	om technical t	hinking.		
2. What is Design Thinking	g? Styles of Design Thinkin	ıg.			
3. Goal Seeking and Sett	ing Research, Understand	ling Context, \	/isual Mapping and Resource Mapping,		
Categories and Trends	Categories and Trends Compositions and Judgments.				
4. Opportunity Mapping and Scenario Visualization, Communications and Reflection, Presentations with					
Business Models.					
Text/Reference books:					
1. Rowe, P. G. (1991). De	sign thinking. MIT press.				
2. Lockwood, T. (2010). I	Design Thinking: Integratir	ng Innovation,	Customer Experience, and Brand Value.		
Sky horse Publishing, Inc.					

- 3. Plattner, H., Meinel, C., & Leifer, L. (Eds.). (2010). Design Thinking: Understand–Improve–Apply. Springer Science & Business Media.
- 4. Schneider, J., & Stickdorn, M. (2011). This is Service Design Thinking: Basics, Tools, Cases. Wiley.

Subject Code:	OE2D14	Course Title	Science and Culture a comparison	
Contact Hours	L-0, T-0, P-0	Credit	3	
Programme	B.Tech	Semester	III	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (10%), Mid term	(30%), Quiz II (10%),	End term (50%)	
Science and Humanities	•			
1. Magnifying and Clas	sifying in Science, Line	ar approach to th	ought in Science, Hierarchical and	
Horizontal linkages to	development through So	cience	[11L]	
2. Synthesis and Transfe	2. Synthesis and Transformation in Cultural Progress, Concentric approach to thought in Humanities,			
Concentric Context to	development and Cultur	re	[11L]	
3. Indian Intellectual Traditions Unity in Diversity- From Unity to Multiplicity, Upanishads and 21st				
Century- Vision and Pluralism, Concept of holiness in a World of Conflict, The Spirit in Human Being,				
Progress in Science, Progress in Humanities. [20L]				
Text/Reference books:				
1. Progress and Values	in the Humanities- Volne	ey Gay- Columbia Un	iversity, New York.	
2. A Cultural History of	India- A.L.Basham			

3. India's Intellectual Traditions- World Association for Vedic Studies

B.Tech Semester-IV

Subject Code:	CS2005	Course Title	Language Theory		
Contact Hours	L-3, T-0, P-0	Credit	3		
Programme	B.Tech	Semester	IV		
Pre-requisites	NIL				
Evaluation scheme	Quiz /Assignments (25%), Midterm (30%), End tern	n (45%)		
Introduction of Automata	a, Computability, and Con	nplexity; Mathematical no	stations and terminology;		
Finding proofs and types of	of proofs.		[04H]		
Finite Automata and regu	ular languages: Formal def	initions, Designing finite	automata, Deterministic		
finite automata, Non-dete	erministic finite automata,	Equivalence of NFAs and	DFAs, finite automata		
with epsilon-transition;	regular expressions an	d languages, Properties	of Regular languages,		
conversion of RE to FA and	d vice versa. Pumping Lemi	ma.	[10H]		
Push down Automata an	d Context free languages	: Context free grammars,	Designing context free		
grammar, Ambiguity in (CFG and its removal, Chor	msky normal form. Push	down Automata: formal		
definition, graphical notations, Languages accepted by PDA, Equivalence of PDA and CFG, Non-					
context free languages, Pumping Lemma for CFGs. [10H]					
Turing Machines and Con	Turing Machines and Computability: Formal definition of Turing machines with examples, Variants of				
Turing machines, [06H]					
Decidability, un-decidabil	lity and reducibility: Deci	dable languages; Decidab	le problems concerning		
regular languages and co	ontext free languages, The	halting problem, Post co	rrespondence problems,		
Undecidable problems.			[08H]		
Computational Complexit	y & NP-Completeness: Th	e class P, The class NP, R	eductions, The class NP-		
Complete, Dealing with N	P-Completeness.		[04H]		
Text/Reference books:					
1. J. H. Hopcroft, R, N	1otwani, J. D. Ullman, Ir	ntroduction to Automata	Theory, Languages, and		
Computation, Third Ec	lition, Pearson Education Ir	nc., New Delhi			

2. M. Sipser, Introduction to the Theory of Computation, Third Edition, Cengage Learning India Pvt. Ltd.

Subject Code:	EC2005	Course Title	Digital Signal Processing
Contact Hours	L-3, T-0, P-2	Credit	4
Programme	B.Tech	Semester	IV
Pre-requisites	NIL		

Evaluation scheme Quiz I (10%), Midterm (20%), Quiz II (10%), End term (40%) Practical (20%)

Course Detail-

Module 1

Time-Domain representation & Characterization of LTI systems, Impulse response representation, Convolution integral & Convolution sum, properties of LTI systems, Stability criteria for LTI systems, Elements of Continuous time & Discrete-time LTI systems. Classification of LTI system: FIR and IIR, Recursive & nonrecursive system, LTI-DT systems -Characterization using difference equation, modelling of difference equation, Frequency Analysis of LTI Systems Frequency domain Characteristics of LTI Systems, Correlation functions and spectra at output of LTI systems. [10H]

Module 2

Discrete Fourier Transform and Computation DFT and its properties, Relation between DTFT and DFT, Linear filtering methods using DFT: Linear filtering as DFT, Filtering of long sequences: Overlap-add and save methods Frequency analysis of signals using DFT, FFT computations using Decimation in time and Decimation in frequency algorithms, radix 2-Butterfly structure, implementation of DFT as linear filtering: Goertzel algorithm, and Chirp algorithm. [09H]

Module 3

Design of Digital Filters FIR design: Windowing Techniques -Need and choice of windows -Linear phase characteristics. IIR design: Analog filter design -Butterworth and Chebyshev approximations; digital design using impulse invariant and bilinear transformation Warping, prewarping - Frequency transformation [09H]

Module 4

Realization of Digital Filters & IIR filter realization: Direct form-I, direct form-II, and Parallel & cascade forms. Finite word length effects in FIR and IIR digital filters: Quantization, round off errors and overflow errors, Overview of DSP processors. [07H]

Module 5

Application of signal processing Applications of digital signal processing: Speech Processing: speech analysis, speech coding, subband coding, ECG processing. [07H]

Text Books/ Reference books:

1. John G.Proakis, Dimitris G. Manobakis, Digital Signal Processing, Principles, Algorithms and Applications, Third edition, (2000) PHI

- 2. S. K. Mitra, Digital Signal Processing: A Computer Based Approach, Tata McGraw Hill, 2006.
- 3. P. P. Vaidyanathan, Multirate systems and filter banks, Prentice Hall, 1993.
- 4. A. V. Oppenheim and R. W. Sehafer, Discrete Time Signal Processing, Prentice Hall, (1989).
- 5. Emmanuel C Ifeachor, Barrie W Jrevis, Digital Signal Processing, Pearson Education.

Experiments/ Practical:

- 1. Write a MATLAB script to plot common continuous time and discrete time signals.
- 2. Write a MATLAB program to demonstrate basic operations on signals.
- 3. Write a MATLAB script for finding the even and odd parts of signal and real and imaginary part of signal
- Write MATLAB script to test to implement a digital system and test for following properties. a. Linearity b. Time Invariance
- 5. Write MATLAB script to plot magnitude and phase response of a system and also plot its poles and zeros and test its stability.
- 6. Using MATLAB analyse a constant coefficient difference equation and plot following.a. Impulse Response b. Step Response c. Output of system for arbitrary input
- 7. Write a MATLAB function to compute N-point DFT and IDFT, validate the result using inbuilt MATLAB functions to compute DFT/IDFT.
- 8. Write MATLAB script to validate following DFT properties. a. Linearity Property b. Circular Shift c. Circular Shift Property d. Time Reversal Property e. Convolution Property
- 9. Write MATLAB script to perform circular convolution. Validate the result using system function.
- 10. Write a MATLAB script to design different types of FIR filters explain with an application of filter.
- 11. Write a MATLAB script to design different types of IIR filters.
- 12. Write a MATLAB script to design different windowing techniques and its frequency response.

Subject Code	ME2	005	Course Title	Engineering Materials and	
Contact Hours	L- 3	, T- 0 ,P- 0		Characterization	
Program	B.Te	ch	Credit	3	
Pre-Requisites	None	2	Semester	IV	
Evaluation sche	ne	Quiz I (10%), Midtern	n (30%) <i>,</i> Quiz II (10%)), End term (50%)	
Learning Objecti	ive: Te	each students about ma	aterials used in engin	eering applications	
Course Detail :					
1. Engineering N	lateria	als and Their Properties	s; The Price and Avail	ability of Materials; The Elastic	
Moduli; The Pł	iysica	l Basis of Young's N	/lodulus; Yield Strer	ngth, Tensile Strength, and Ductility;	
Strengthening M	lethoo	ls and Plasticity of Poly	crystals, Material Tes	ting. [05H]	
2. Fast Fracture a	ind To	oughness; Fatigue Failu	re; Creep, Material Te	esting. [04H]	
3. Metals; Time	-Tem	perature–Transformat	ion Diagram; Fine-(Grained Castings; Single Crystals for	
Semiconductors;	, Amo	rphous Metals; Light A	lloys; Processing Met	als; Heat Treatment [07H]	
4. Ceramics; Cer	amic	Composites; Mechar	nical Properties of	Ceramics; Production of Engineering	
Ceramics; Mater	ial Tes	sting and Applications.		[04H]	
5. Polymers; Meo	5. Polymers; Mechanical Properties of Polymers; Processing Polymers; Material Testing and Applications. [05H]				
6. Composites; P	roper	ties of Composites a	nd Foams; Processir	ig of composites; Basic Mechanics of	
Composites; Mat	terial	Testing and Applicatior	าร.	[03H]	
Text/Reference books:					
1. DRH Jones and M Ashby, Engineering Materials 1 4 th Ed., Butterworth-Heinemann					
2. DRH Jones and M Ashby, Engineering Materials 2 4 th Ed., Butterworth-Heinemann					
3. NE Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and					
Fatigue, 3 rd E	d., Pea	arson			
4. Callister, Materials Science and Engineering, 8 th Ed., John Wiley & Sons Inc.					

Subject Code:	CS2006	Course Title	Operating System
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	IV
Pre-requisites	NIL		

Quiz I (15%), Mid term (30%), Quiz II (15%), End term (40%) **Evaluation scheme** Operating systems for mainframe and desktops: A Historical Overview, Batch OS, Multiprogramming OS, Time sharing OS, Multiprocessor and Distributed systems, Clustered systems, Real Time Systems. [02H] Operating system structure: OS services, system calls, System programs, System structure, Virtual machines. [04H] **Process Management:** Process concept, Process scheduling, Operations on processes, Threads. [03H] CPU Scheduling: Scheduling Criteria, Scheduling algorithms, Multiprocessor scheduling, Real time scheduling, Thread scheduling. [04H] Inter process communication: Cooperating processes, The Critical Section problem, Two tasks solutions, Semaphores, Classical synchronization. [04H] Deadlocks: Characterization, Methods for handling deadlocks, Prevention, avoidance and detection,

 Recovery.
 [03H]

 Memory management:
 Background, swapping, Contiguous memory allocation, Paging and

segmentation, Virtual memory, Demand paging, Page replacement, thrashing.[10H]File system management: File concept, Access method, Directory structure, File System mounting, File
sharing, Allocation methods, Protection.[04H]Mass storage structure and management: Disk structure, Disk scheduling and Management, Swap space[04H]

 Mass storage structure and management: Disk structure, Disk scheduling and Management, Swap space

 management, RAID structure.

 [04H]

Protection and Security: Goals, Domain of protection, Access matrix, Capability based systems, Securityproblems, User authentication, Program threats and system threats[04H]

Text/Reference books:

1. A. Silberschatz, B. P. Galvin, G. Gagne, Operating System, 6th Edition, John Wiley & Sons Inc., 2004

2. W. Stalling, Operating System, 6th edition, Pearson Education, 2009

Subject Code	EC2006	Course Title	Control Systems		
Contact Hours	L- 3, T- 0 ,P-2	Credit	4		
Programme	BTech	Semester	IV		
Pre-requisites	Basic Electronics				
Evaluation scheme	Lab: (40%) Quiz I (2	0 %), Midterm (40 %),			
Module 1					
Introduction: Terminolo	ogy and basic structur	e, feedback control the	ory, multivariable systems		
Modelling of physical s	ystems: Transfer func	tion and state- variable	models; block diagram reductions,		
signal flow graph and M	asons gain formula.				
Time Domain Analysis:	Time response of firs	t and second order syst	ems, steady state errors. [10H]		
Module 2					
Control System Charact	eristics: Stability, sen	isitivity, steady-state ac	curacy Dede Diet Deler plet and Nuquist		
Stability Analysis: Routi	n-Hurwitz test, relativ	e stadility, Root locus, E	sode Plot Polar plot and Nyquist		
Module 3			[100]		
Controller Design: PID (Controller Lead Lag C	omnensator			
Discreate Domain: The	Discreate Domain: The z-transform and Inverse z-transform Pulse Transfer Function z- and s-domain				
Relationship, Stability.			[10H]		
Module 4 State Variab	le Methods: Concept	s of state variables and s	state model - state models for linear		
continuous-time and Dis	screte Systems, soluti	ion of state equations fo	or continuous and discrete systems,		
concepts of controllability and observability, Pole placement by State Feedback. [10H]					
Lab:					
1. Matlab Fund	damentals				
2. Simulink Fundamentals					
3. Control Toolbox					
4. Process Con	4. Process Control Simulator				
5. Lead/Lag Co	ompensator				
6. Relay Contro	5. Relay Control System				
7. AC servo Control					
8. DC servo Control					
9. Frequency Response Analysis					
10. Case study					
Text Books:					
1. K. Ogata, Modern Control Engineering, Prentice Hall India, 2006.					
Reference books:					
1. I. J. Nagrath and M. Gopal, Control System Engineering, New age International, 5th edition, 2008.					
2. B. C. Kuo, Automatic Control Systems, Prentice-hall of India, 7th edition, 2000.					
3. M Gopal, Digital C	ontrol and state varia	ble methods, Tata Mac	Graw-Hill, 2nd edition, 2003		

Subject Code:	ME2006	Course Title	Kinematics and Dynamics of
Contact Hours	L-3, T-1, L-2,		Machine
Programme	B.Tech	Credit	4
Pre-requisites	NIL Semester IV		
Evaluation scheme	Quiz I (10%), Mid term (20%), Quiz II (10%), End term (40%), lab (20%)		

Course Detail :

1. **KINEMATICS** : Plain motion, kinematic concepts of links; basic terminology and definitions; inversion of kinematic chains, absolute and relative motion, kinematics and structure diagrams, equivalent linkages, vector diagram, displacement, velocity and acceleration polygons, analysis, instantaneous centres, special graphical methods for slider crank mechanism. **[08H]**

- 2. **KINEMATIC SYNTHESIS OF MECHANISMS** : Introduction, Movability of four bar linkage, Function Generation, path generation, motion generation, Errors in synthesis problems, Chebyshev spacing of precision points. [06H]
- 3. **GEARS :** Fundamental law of gearing, classification and basic terminology, involute tooth profile and its kinematic considerations, type of gears, standards in tooth forms, gear trains, simple, compound, reverted and epicyclic gear trains. **[08H]**
- 4. **CAMS** : Classification of Followers and Cams, Terms used in Radial Cams, Cam Mechanism and its Uses, Displacement, Velocity and Acceleration Diagrams, When the Follower Moves With Uniform Velocity, Simple Harmonic Motion, Uniform Acceleration and Retardation and Cycloid Motion, Construction of Cam Profile for a Radial Cam, Operating a Knife Edge, Roller and Flat Faced Follower.
 - [05H]
- GOVERNORS : Functions, Difference between Governor and Flywheel, Various Terms Used, Types of Governor-Watt, Porter, Proell & Hartnell; Inertia Governor, Sensitiveness and Stability of Governor; Isochronous Governor, Hunting, Effort and Power of Porter Governor, Controlling Force Diagrams For Porter and Spring Controlled Governor, Coefficient of Insensitiveness. [04H]
- 6. **TURNING MOMENT AND FLYWHEEL :** Turning Moment Diagram for a Four Stroke Cycle I.C. Engine and Multi Cylinder Engine, Fluctuation of Energy and Production of Energy and Co-Efficient of Fluctuation of Energy, Co-Efficient of Fluctuation of Speed, Energy Stored in a Flywheel, Dimensions of the Flywheel Rim, Fly Wheel in Punching Press. **[05H]**
- BALANCING OF MACHINERY : Necessity of Balancing, Static and Dynamic Balancing, Balancing of Rotating Masses in one Plane, In Different Planes -Analytical and Graphical Methods, Partial Unbalanced Primary Force in an Engine, Balancing of Reciprocating Masses, Condition of Balance in Multi Cylinder in Line Engines. Balancing of V Engine. [06H]
- 8. **STAIC AND DYNAMIC FORCE ANALYSIS** : 2 and 3 force members, torque addition, free body diagram, Inertia forces, D'alembert's Principle, offset inertia forces, equivalent force analysis for various mechanisms, matrix method. [06H]

Experiments:

Experiment No. 1

- 1. To study inversions of 4-bar mechanisms, single and double slider crank mechanisms.
- 2. To study various types of gears and gear trains.
- 3. To study various types of steering mechanisms.
- 4. Study jump phenomenon in the cam-follower system.
- 5. Study of Gyroscopic effect and determination of gyroscopic couple on motorized gyroscope.
- 6. To perform the experiment for static balancing on static balancing machine.
- 7. To perform the experiment for dynamic balancing on dynamic balancing machine.
- 8. To understand the balancing of reciprocating masses.

9. Determine the moment of inertia of connecting rod by compound pendulum method and tri-flair suspension pendulum.

10. To verify the relation $T=2\pi v lg$ for a simple pendulum.

11. To determine whirling speed of the shaft and study effect of shaft diameter and end conditions on the same.

12. To study the performance characteristics curves, stability and sensitivity of the Governors: Porter, Proell and Hartnell.

13. To study various types of dynamometers.

Text/Reference books:

- 1. Rattan S.S., .Theory of Machines., TMH
- 2. Thomas Bevan, .Theory of Machines., CBS
- 3. Theory of Mechanisms & Machinesby Ghosh & Mallick, EWP
- 4. John J. Uicker, Jr., Gordon R. Pennock and Joseph E. Sigley (2005), "Theory of Machines and Mechanisms (3rdEd)," Oxford University Press, Indian Edition.
- 5. K J Waldron and G L Kinzel (2004), "Kinematics, Dynamics and Design of Machinery (2nd Ed)," Wiley

Subject Code:	CS2007	Course Title	Design & Analysis of Alg	gorithm
Contact Hours	L-3, T-0, P-0	Credit	3	
Programme	B.Tech	Semester	IV	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Mid term (3	30%), Quiz II (15%), End term (40%)	
Course Detail :				
Models of Computation: sp	bace and time complexity n	neasures, lower ar	nd upper bounds; Search Tre	es:
TRIE; B+ Trees, Binomial Tr	ees.			[10H]
Design techniques: the gre	edy method, divide-and-co	nquer, dynamic p	rogramming, backtracking, k	oranch
and bound; examples				[10H]
Lower bound for sorting; Selection. [02H]				
Graph Algorithms: connectivity, strong connectivity, bi-connectivity, topological sort, shortest paths,				
minimum spanning trees, The disjoint set union problem; [10H]				
String matching; [02H]				
NP-completeness; Introdu	ction to approximate algori	thms and Random	ized algorithms.	[08H]
Text/Reference books:				
1. T.H.Cormen, C ELeisers	son, R LRivestand C Stein,In	troduction to Algo	prithms, MIT Press.	
2.J. Kleinberg and E.Tardo	os,Algorithm Design, Addiso	on Wesley		
3. A.Aho, J. E.Hopcroftan	d J. D.Ullman, The Design an	d Analysis of Com	puter Algorithms, Addison-\	Wesley.
4. S.Sahni,Data Structure	s, Algorithms and Applicati	onsin C++, McGra	w-Hill.	
5. M. T. Goodrich and R.	.Tamassia,Algorithm Desigr	n: Foundations, A	nalysis and Internet Exampl	es, John
Wiley & Sons, 2001.	_			

Subject Code:	EC207a	Course Title	AI and its Application
Contact Hours	L-2, T-0, L-0,	Credit	2
Programme	B.Tech	Semester	IV
Pre-requisites	NIL		

Evaluation scheme Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%)

Course Detail :

Module I

 What is AI? AI Concepts, Terminology, and Application Areas, AI: Issues, Concerns and Ethical Considerations, The Future with AI, uninformed search, Heuristic search
 [07H]

 Module II
 Inscription AI - Uncertainty, Probability, Syntax and Semantics, Inference, Independence, and Payor.

Uncertainty in AI, Uncertainty, Probability, Syntax and Semantics, Inference, Independence and Bayes' Rule, Bayesian Network, Neural Networks, Support Vector Machine [07H] Module III

Classification & Regression, Supervised, Unsupervised and Reinforcement Learning, Theory, concepts and applications [07H]

Module IV

 Applications of AI: Speech processing, Image Processing, Data Classification
 [07H]

Text/Reference books:

1. Nilsson, N. J., Principles of Artificial Intelligence. Palo Alto, CA: Tioga (1981).

2. S. Rajasekaran and G.A.Vijaylakshmi Pai, Neural Networks Fuzzy Logic, and Genetic Algorithms, Prentice Hall of India, 2003

3. Nilsson, N. J. Artificial Intelligence - A Modern Synthesis. Palo Alto: Morgan Kaufmann. (1998).

Subject Code:	EC207b	Course Title	Architecture of Cellular Systems
Contact Hours	L-2, T-0, L-0,	Credit	2
Programme	B.Tech	Semester	IV
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%), Midterm (30%	5), Quiz II (15%),	End term (40%)
Course Detail : Module 1 Fundamental of Cellular S	Systems		
Frequency reuse, Channel	l assignment strategies, Hand	doff strategies, I	nterference and system capacity,
Trunking and grade of ser Module II Cellular Network Standar	vice, Coverage and capacity ds	improvement in	cellular systems. [07H]
Second Generation (2G) a	nd Third Generation (2G) ce	llular networks,	Architecture and Technologies of
2G and 3G, TDMA, CDMA Module III			[07H]
4G and Introduction to 50	6		
4G: Architecture, Technol	ogy, LTE. Introduction and sy	stem concepts	to 5G [07H]
Module IV			
5G Architecture, 5G radio dynamic reconfiguration.	-access technologies, Interfe	rence managem	ent, mobility management, and [07H]
Text Books:			
 T. S. Rappaport, Wirel A. Osseiran, J.F. Mons Cambridge University Reference books: 	ess Communications: Princip errat and P. Marsch, 5G Mol Press, 2016.	les and Practice	, Pearson Education, 2004. s Communications Technology,
1. Saad Z. Asif, 5G Mobile	Communications: Concepts	and Technologie	es, CRC Press, 2019

Cubicat Code	ME2007		Manufacturing Technology	
Subject Code:		Course litle		
Programme	L-3, I-U, L-2, B Tech	Somostor	4	
Pre-requisites	NII	Jennester		
Evaluation scheme	Quizzes (15%): Mid-sem (3	5%) and End-ser	n (45%)	
Course Detail :		,		
Machining and Mechanics	of Metal Cutting:		[14H]	
Introduction to orthogonal	& oblique cutting; Chip inf	ormation mech	anism; heat generation and cutting	
tool temperature, tool geo	metry –ASA, ORS, NRS and	relationships, s	election of tool angles. Cutting tool	
material; tool wear; tool li	fe and machinability; surface	ce finish; cutting	g fluids. Merchant's circle diagram,	
coefficient of friction, stres	ss, strain and strain rate, she	ar angle. Lee ar	nd Shaffer's Relationship: Friction in	
Metal cutting-sticking & sli	ding			
Material Removal Processes: [08H]				
Basic operations of turning	, shaping, slotting and planr	ing, drilling and	boring, milling. Introduction multi-	
point cutting tools; twist drill, helical milling cutter. Practical machining operations with machining				
parameters, force magnitudes, power consumption, material removal rate, time per pass.				
Cutting Force Measurement: [02H]				
Basic methods of measurement, axially loaded members, cantilever beam, rings and octagon,				
dynamometer requirement	ts machine tool dynamomet	ers.		
Economics of Machining:			[04H]	
Cutting parameters for minimum production cost criteria; maximum production and profit rate criterion.				
Restrictions on cutting conditions (power, speed, force and vibration, surface finish).				
Metal Forming:			[10H]	
Plasticity: Introduction to stress, strain, stress-strain relationships, Mechanics of Forming Processes:				
Rolling, Forging, Drawing, D	Deep Drawing Extrusion, Pur	nching and Blanl	king.	
Casting:			[04H]	
Design of riser, runner and	gating system, mechanism a	and analysis of s	olidification	
Text/Reference books:				
1. M.C. Shaw, Metal Cuttin	ng Principles, 2ndEdition Ox	ford University F	Press, England 2005.	
2. A. Ghosh and A.K. Malik	<, Manufacturing Science. Af	filated East Wes	st press 1985.	

3. Mikel P. Groover, "Fundamentals of Modern Manufacturing", John Wiley & Sons inc

Contact Hours L-2, T-0, P-2, B. Tech Credit 3 Semester 1V Pre-requisites NIL Quiz/ assignment/ attendance -20, Mid Sem - 15, End Sem - 30, Lab -15, Project - 20 cearning Objective: The course aims to provide the students an exposure to the connection between the production systems and cyber world. Various elements of production system and cyber world and their integration will be covered in the course. Course Detail : 1 An overview of the production system – [02H] 3. Introduction to Cyber Physical System – [03H] 4. Different levels of Cyber Physical Production System [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [03H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [02H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology - [02H] 6. Introduction to sensors and actuators and electronic circuit Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 3:	Subject Code:	SM2007	Course Title	Cyber Physical Production S	ystems
Programme Pre-requisites B. Tech NIL Semester IV Evaluation scheme Project - 20 Quiz/ assignment/ attendance -20 , Mid Sem - 15, End Sem - 30, Lab -15, Project - 20 cearning Objective: The course aims to provide the students an exposure to the connection between the production systems and cyber world. Various elements of production system and cyber world and their integration will be covered in the course. Course Detail : [02H] 1. An overview of the production system – [03H] 2. Introduction to Cyber Physical System – [03H] 3. Introduction to Cyber Physical Production System [03H] 4. Different levels of Cyber Physical Production System [03H] 5. Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [03H] 6. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] 9. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] 6. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology - [01H] 1. Superiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 3:	Contact Hours	L-2, T-0, P-2,	Credit	3	,
Pre-requisites NIL Evaluation scheme Quiz/ assignment/ attendance -20 , Mid Sem - 15, End Sem - 30, Lab -15, Project - 20 eearning Objective: The course aims to provide the students an exposure to the connection between the production systems and cyber world. Various elements of production system and cyber world and their integration will be covered in the course. Course Detail : [02H] 1. An overview of the production system – [03H] 2. Introduction to Cyber Physical System – [03H] 3. Introduction to Cyber Physical Production System [03H] 4. Different levels of Cyber Physical Production System [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [03H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control - scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] f. Introduction to Smart Manufacturing - [02H] f. Introduction to Smart Manufacturing - [02H] f. Introduction to Signal using ATMEGA microcontrollers and electronic circuit Experiment 1: Introduction	Programme	B.Tech	Semester	IV	
Evaluation scheme Quiz/ assignment/ attendance -20 , Mid Sem - 15, End Sem - 30, Lab -15, Project - 20 exerning Objective: The course aims to provide the students an exposure to the connection between the production systems and cyber world. Various elements of production system and cyber world and their integration will be covered in the course. Sourse Detail : [02H] 1. An overview of the production system – [01H] 3. Introduction to Cyber Physical System – [03H] 4. Different levels of Cyber Physical Production System [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [03H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] 6. Introduction to Smart Manufacturing - [02H] 6. Introduction to Smart Manufacturing - [02H] 6. Introduction to Smart Manufacturing - [02H] 6. Introduction to SMR Amicrocontrollers and electronic circuit Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 1: Introduction to AVR microcontroller.	Pre-requisites	NIL			
earning Objective: The course aims to provide the students an exposure to the connection between the production systems and cyber world. Various elements of production system and cyber world and their integration will be covered in the course. Course Detail : [02H] 1. An overview of the production system – [01H] 2. Introduction to Cyber Physical System – [03H] 4. Different levels of Cyber Physical Production System [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [03H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] c. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant [02H] Layout [02H] C. Introduction to SMart Manufacturing - [02H] Lab: [02H] Experiment 1: Introduction to AVR microcontrollers and electronic circuit [2periment 3: Controlling a motor using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. [2periment 4: Programming on CNC lathe machine	Evaluation scheme	Quiz/ assignment/ attendance Project - 20	-20 , Mid Sem -	15, End Sem - 30, Lab -15,	
production systems and cyber world. Various elements of production system and cyber world and their integration will be covered in the course. Course Detail : [02H] 1. An overview of the production system – [01H] 2. Introduction to Cyber Physical System – [03H] 3. Introduction to Cyber Physical Production System – [03H] 4. Different levels of Cyber Physical Production System [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant [02H] 1ayout [02H] [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 5: Programming on CNC lathe machine - simple operation Experime	Learning Objective: The	e course aims to provide the stu	dents an exposi	ure to the connection betwee	en the
ntegration will be covered in the course. Course Detail : 1. An overview of the production system – [02H] 2. Introduction to Cyber Physical System – [03H] 3. Introduction to Cyber Physical Production System – [03H] 4. Different levels of Cyber Physical Production System a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	production systems and	l cyber world. Various elements	of production s	ystem and cyber world and t	heir
Course Detail : [02H] 1. An overview of the production system – [01H] 2. Introduction to Cyber Physical System – [03H] 3. Introduction to Cyber Physical Production System – [03H] 4. Different levels of Cyber Physical Production System – [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to AVR microcontrollers and electronic circuit Experiment 1: Introduction to AVR microcontrollers and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation	integration will be cover	red in the course.			
1. An overview of the production system – [02H] 2. Introduction to Cyber Physical System – [03H] 3. Introduction to Cyber Physical Production System [03H] 4. Different levels of Cyber Physical Production System [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant [02H] f. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [02H] 6. Introduction to AVR microcontrollers and electronic circuit Experiment 1: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and materi	Course Detail :				
2. Introduction to Cyber Physical System – [01H] 3. Introduction to Cyber Physical Production System – [03H] 4. Different levels of Cyber Physical Production System [03H] a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant [02H] f. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [02H] Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device Experiment 6: Building a production system using m	1. An overview of the	production system –			[02H]
 Introduction to Cyber Physical Production System – [03H] Different levels of Cyber Physical Production System "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] Level 3: Supervisory control- scheduling, FMS, quality control- [02H] Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H] Introduction to Smart Manufacturing - [02H] Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device 	2. Introduction to Cyb	er Physical System –			[01H]
 4. Different levels of Cyber Physical Production System a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology - [01H] Labe: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	3. Introduction to Cyb	er Physical Production System -	-		[03H]
 a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system- [10H] b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device 	4. Different levels of C	Cyber Physical Production System	n		
b. Level 2: Control Level - edge computing, an introduction to data flow protocols, virtual" reality - [03H] c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	a. "Level 1: Physical world (field level) - material, machines, tools, material handling and associated cyber systems like sensors, actuators, computer integrated manufacturing system-				
c. Level 3: Supervisory control- scheduling, FMS, quality control- [02H] d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	b. Level 2: Control Leve	el - edge computing, an introduc	tion to data flo	w protocols, virtual" reality -	[03H]
 d. Level 4: Planning level- Computer Aided Production Planning and Control, Inventory control - [02H] e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation 	c. Level 3: Supervisory	control- scheduling, FMS, qualit	y control-		[02H]
e. Level 5: Management level -Sales and forecasting, Distribution, finance, design, factory" and plant layout [02H] 5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	d. Level 4: Planning lev	el- Computer Aided Production	Planning and Co	ontrol, Inventory control -	[02H]
Iayout[02H]5. Introduction to Smart Manufacturing - 6. Introduction to Blockchain Technology - [01H][02H]6. Introduction to Blockchain Technology - [01H][01H]Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	e. Level 5: Management level -Sales and forecasting. Distribution, finance, design, factory" and plant				
5. Introduction to Smart Manufacturing - [02H] 6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	layout	6,		, , , , , ,	[02H
6. Introduction to Blockchain Technology – [01H] Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	5. Introduction to Sma	rt Manufacturing -			[02H]
Lab: Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	6. Introduction to Bloc	kchain Technology –			[01H]
 Experiment 1: Introduction to AVR microcontrollers and electronic circuit Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - to machine a motor using machines and material handling device 	Lab:				
Experiment 2: Introduction to sensors and actuators and building simple system for actuating an LED based on sensor signal using ATMEGA microcontroller. Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	Experiment 1: Introduc	tion to AVR microcontrollers an	d electronic cir	cuit	
Experiment 3: Controlling a motor using ATMEGA microcontroller. Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	Experiment 2: Introduct based on sensor signal	tion to sensors and actuators a using ATMEGA microcontroller	nd building simp	ole system for actuating an Ll	ED
Experiment 4: Programming on CNC lathe machine - simple operation Experiment 5: Programming on CNC lathe machine - complex operation Experiment 6: Building a production system using machines and material handling device	Experiment 3: Control	ling a motor using ATMEGA mic	rocontroller.		
Experiment 6: Building a production system using machines and material handling device	Experiment 4: Program CNC lathe machine - co	nming on CNC lathe machine - si Somplex operation	mple operation	Experiment 5: Programming	on
	Experiment 6: Building	a production system using mac	hines and mate	rial handling device	
Experiment 7: Connecting the sensors, actuators to the Internet through Node CMU microcontroller for the transfer of the simple information.	Experiment 7: Connect the transfer of the simple	ing the sensors, actuators to the ple information.	e Internet throu	igh Node CMU microcontroll	er for
Experiment 8 to 12: Developing a cyber physical productiOn system by combining different components	Experiment 8 to 12: De	eveloping a cyber physical produ	icti0n system by	y combining different compo	nents
Text/Reference books:					
1. Groover, Automation, Production System, Computer Integrated Manufacturing, Pearson Publishing	1. Groover, Automat	ion, Production System, Compu	iter Integrated	Manufacturing, Pearson Pub	olishing

Groover, Automation, Pro
 Various research papers.

Subject Code:	CS2008	Course Title	Computer Networks
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	IV
Pre-requisites	NIL		

Quiz I (15%), Mid term (30%), Quiz II (15%), End term (40%). **Evaluation scheme**

Introduction: History and Development of Computer Networks, Review of Data communication concepts and techniques, Networks Topologies, Network model components, layered network models (OSI reference model, TCP/IP networking architecture [10H]

Data Link and MAC sublayer:

- Preliminaries of Error Control, Flow Control and Sliding Window Protocols.
- · Aloha Protocols, CSMA Protocols, Collision Free Protocols, Local Area Networks -- Ethernet, Wireless LAN, Broadband Wireless. [10H]

Network Layer: Routing Algorithms, Subnets, Congestion Control Algorithms, Internetworking - Bridges and Routers [10H]

Transport Layer: Connection Establishment, and release, TCP, UDP, Flow Control and Congestion Control, Quality of Services. [10H] [02H]

Application Layer Potocols and Introduction to Network Security.

Text/Reference books:

- 1. Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, 5th Edition, Pearson Publications, 2010.
- 2. W. Stallings, Data and Computer Communication, 10th Edition, Pearson Publication, 2013.
- 3. B. A. Forouzan, Data Communications and Networking, 5th Edition, McGraw Hill Publication, 2012.
- B. S. Davie and L. L. Peterson, Computer Networks: A Systems Approach, 5th Edition, Morgan 4. Kaufmann Publication, 2011.
| Subject Code | EC20 | 08 | Course Title | Analog Integrated Circuit Design | | |
|--|---|--|---|--|--|--|
| Contact Hours | L-3, | T- 0 ,P- 2 | Credit | 4 | | |
| Program | B.Teo | :h | Semester | IV | | |
| Pre-Requisites | None | | | | | |
| Evaluation scher | ne | Quiz I (10%), Midterm | (30%) <i>,</i> Quiz II (10% |), End term (40%) Practical (10%) | | |
| Module 1 | | | | | | |
| Introduction to Analog Design & Basics CMOS Device Physics Why analog, Why Integrated, Why CMOS, general concepts levels of abstraction, robust analog deign, General considerations- MOSFET as a switch, MOSFET structure, MOS symbols. MOS I/V characteristics: threshold voltage, derivation of I/V characteristics, second order effects. MOS device models- MOS device layouts, MOS device capacitances, MOS small signal models, MOS spice models, nMOS v/s pMOS devices, long channel v/s short channel devices. [07H] | | | | | | |
| Basic concepts o
diode-connected
degeneration, so
device models.
Module 3 | f amp
I load,
ource | lifiers, Common Source
CS stage with current-s
follower, common gat | e Stage : common s
ource load, CS sta
e stage, cascode | source with resistive loads, CS stage with
ge with triode load, CS stage with source
stage, folded cascade stage, choice of
[07H] | | |
| Differential Amplifiers Current Sources and Mirrors : Single ended and differential operation, basic differential pair- qualitative analysis, quantitative analysis, common mode response, differential pair with MOS loads, Gilbert cells. Current sources, basic current mirrors, cascade current mirrors, wilson current mirror, large signal and small-signal analysis. [07H] | | | | | | |
| Frequency Response of all converters, analor Introduction to Correlated and U Noise in Different | onse o
singl
og into
RF ele
Jncorr
tial Pa | of Amplifiers and Noise
e stage amplifiers, co
erconnects, analog test
ectronics, basic concep
related Sources, Therma
nirs, Noise Bandwidth. | : Miller effect, as
omparators, charg
ing and layout issu
ts in RF design. N
al Noise, Flicker No | sociation of poles with nodes, frequency
e-pump circuits and multipliers, data
ues, low voltage and low power circuits.
loise Spectrum, Amplitude Distribution,
pise, Noise in all Single Stage Amplifiers,
[07H] | | |
| Practical | | | | | | |
| Lab 1 Introduction to EDA tools (Cadence) and Overview on Analog Circuit Design Custom IC Design Flow, Analog IC Design Flow, Procedure for analog IC design with CMOS inverter as an example(Schematic entry to GDS-II file generation) Lab 2 Design and Simulation of basic analog circuit with given specification Common Source Stage-common source with resistive loads, CS stage with diode-connected load, CS stage with current-source load, CS stage with triode load, CS stage with source degeneration, cascade stage Differential amplifier design with given specifications. Basic Current mirror design and simulation | | | | | | |
| Text Books: | | | | | | |
| 1. Design of Analog CMOS Integrated Circuits. Razavi, McGraw-Hill, 2001. | | | | | | |
| CMOS Circuit Design, Layout and Simulation, R.Jacob Baker,H.W.Li, and D.E. Boyce, Prentice-Hall of
India,1998. Analog VLSI Signal and Information Process, Mohammed Ismail and Terri Faiz, Mc Graw Hill book | | | | | | |
| 3. Analysis and
USA"", (3rd Edition | company 1994.
3. Analysis and design of Analog Integrated circuits, Paul R. Gray and R.G.Meyer, "John Wiley and sons,
USA"", (3rd Edition), 1993. | | | | | |
| 5. Journals: (i) IEEE Journal of Solid state Circuits (ii) IEEE Trans. on Communications, B. Razavi, Prentice- | | | | | | |

.1998, Hall

Subject Code:	ME2008	Course Title	Fluid Mechanics and Machines	
Contact Hours	L-3, T-1, L-2,	Credit	4	
Programme	B.Tech	Semester	IV	
Pre-requisites	NIL			
Evaluation scheme	Evaluation scheme Lab Work (20%) Quiz I-II (10%), Mid-Term (25%), Assignment (10%), End-Term(35%)			
Learning Objective:				
 Understand the basics of fluid statics, kinematics and dynamics, used in the applications of Aerodynamics, Hydraulics, Marine Engineering, Gas dynamics etc. Understand the importance of flow and pressure measurements and its applications in Industries 				

- Recognize the basic design concepts of a pipe flow and understand the various losses in a flow system.
- Realize the significance of non-dimensional parameters.
- Carry out dimensional analysis and establish relationship between the dependent and independent variables
- Understand boundary layer formation and concepts related to flow separation

• Accquire knowledge about the testing of fluid machineries for its performance characteristics

Course Detail :

Module I

Fluid Statics: Definition of Fluid & Characteristics – Concept of Continuum - Properties of fluids-Classification of Fluids – Pascal's and Hydrostatic Law- Hydrostatic Forces on Different Surfaces – Determination of Total Pressure and Centre of Pressure – Buoyancy – Centre of Buoyancy – Metacentre – Conditions of Equilibrium for Submerged and Floating Bodies. [08H]

Module 2

Fluid Kinetics, Dynamics & Flow Through Pipes: Description of Fluid Motion – Lagrangian and Eulerian Methods – Types of Fluid Flow – Stream Function and Velocity Potential – Rotation – Vorticity – Flow Lines, Reynolds Transport Theorem – Continuity Equation – Euler's Equation – Bernoulli's Equation and its Practical Applications

Hydraulic and energy gradient – Laminar flow through circular conduits and circular annuli-Boundary layer concepts – types of boundary layer thickness – Darcy Weisbach equation –friction factor- Moody diagram-commercial pipes- minor losses. [22H]

Module 3

Dimensional Analysis: Dimensional analysis and similitude, dimensionless parameters, kinematic and dynamic similarity. [05H]

Module 4

Pumps: Impact of jets – Euler's equation – Theory of roto-dynamic machines – various efficiencies– velocity components at entry and exit of the rotor- velocity triangles – Centrifugal pumps– working principle – work done by the impeller – performance curves – Reciprocating pump- working principle – Rotary pumps –classification. [10H]

Module 5

Turbines: Classification of turbines – heads and efficiencies – velocity triangles. Axial, radial and mixed flow turbines. Pelton wheel, Francis turbine and Kaplan turbines- working principles – work done by water on the runner – draft tube. Specific speed – unit quantities – performance curves for turbines – governing of turbines [10H]

List of Practical

- 1. To Determine Bernoulli's Theorem.
- 2. To determine friction factor for the given pipes and also plot friction factor vs Reynold's number for all the pipes and compare it with the Moody's chart.
- To calculate the Coefficient of Discharge Cd, Coefficient of Velocity Cv, and Coefficient of Contraction Cc for various heads over orifice fitted in the side of a tank. And to draw a relationship between these coefficients and the size of the orifice
- 4. To compute Piezo-metric head and draw Hydraulic Gradient Line for the given flow passage
- 5. To determine Experiments performance and operating characteristics of Francis turbines
- 6. To determine Experiments performance and operating characteristics of centrifugal pumps
- 7. To determine the Coefficient of Discharge of the given Venturimeter
- 8. To determine the Coefficient of Discharge of the given Orifice meter.
- 9. To determine Experiments performance and operating characteristics of pumps reciprocating
- 10. To determine Experiments performance and operating characteristics of Kalpan turbine-1KW

11. To Determine Head loss Coefficient for the given bend in pipe available
12. Determination of the metacentric height and position of the metacentric height with angle of heel of ship model.
Text Books:
1. Yunus A. Çengel, John M. Cimbala (2013) Fluid Mechanics: Fundamentals And Applications, McGraw-Hill,
3rd Edition.
2 Dr.R.K.Bansal, (2012), A Textbook of Fluid Mechanics and Hydraulic Machines, 5th Edition, Laxmi Publication. Not allowed
Reference Books:
1. Robert W. Fox, Alan T. McDonald, Philip J. Pirtchard John W. Mitchell (2015), Introduction to Fluid
Mechanics, 9th Edition, Wiley Publications.
2. P.N.Modi and S.M.Seth (2011), Hydraulics and Fluid Mechanics including Hydraulic Machines, 17th
Edition.

 Donald F. Elger, Barbara C. Williams, Clayton T. Crowe, John A. Roberson (2013) Engineering Fluid Mechanics, John Wiley & Sons, 10th Edition.

Subject Code:	NS2001	Course Title	Biology for Engineers			
Contact Hours	L-2, T-0, P-0	Credit	2			
Programme	B.Tech	Semester	IV			
Pre-requisites	NIL					
Evaluation scheme						
Course Detail :						
Cells, Cellular Organelles,	Nucleic Acids (DNA, RNA s	structure and fu	unction), Proteins- Different levels of			
structures, Folding and m	is-folding, Protein Purificat	tion techniques	s; Enzymes, Carbohydrates, Lipids			
& Lipid membranes, Drug Discovery. Topics would emphasize importance of biomolecule vis-à-vis						
numerous every day applications.						
Text/Reference books:						
1. Berg, J. M., Tymoczko, J.L., and Stryer, L., Biochemistry, W.H. Freeman & Company, 6th edition,						
2006.						
2. Alberts, B., Alexander, J., Lewis, J., Raff, M., Roberts, K., Walter, P., Molecular Biology of the Cell, 6th						

edition, Garland Science Publishing, 2007.

 Donald Voet, Judith G. Voet, Charlotte W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level, Publisher : Wiley; 5th edition (29 February 2016)

Subject Code:	DS2009		Design Research Including user		
Contact Hours:	L-2, T-0, P-2	Course fille:	Study		
Programme :	B.Des	Credit:	3		
Pre-requisites:	NIL	Semester :	IV		
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End	term (40%)		
Course Detail					
Qualitative and qual	itative research methodo	ology,	[07H Lecture,+3H Lab]		
Questionnaire desig	n, validation, repeatabilit	y testing, psychophysica	l scales, [07H Lecture,+3H Lab]		
Direct observation and activity analysis, photography as a tool in design research et[07H Lecture,+3H Lab]					
Persona, scenario, story boarding. [07H Lecture,+3H Lab]					
Text/Reference books:					
1. Laurel, B. (2003). Design research: Methods and perspectives. MIT press.					
2. Koskinen, I., Zimmerman, J., Binder, T., Redstrom, J., & Wensveen, S. (2011). Design research					
through practice: From the lab, field, and showroom. Elsevier.					
3. Creswell, J. W., & Clark, V. L. P. (2007). Designing and conducting mixed methods research.					
4. Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches.					
Sage publication	IS.				

Sub	oject Code:	DS2010	Course Title:	Materials and Processes		
Сог	ntact Hours:	L-2, T-0, P-2	Credit:	3		
Pro	ogramme :	B.Des	Semester :	IV		
Pre	e-requisites:	NIL				
Eva	aluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%),	End term (40%)		
Со	urse Detail-					
Imp	portance of Mater	rial in Design, Conventior	nal Materials in Desig	gn. [07H Lecture,+3H L	.ab]	
Ma	Material Science and Material Affordance in Product Design. [07H Lecture,+3H Lab]					
Manufacturing of Materials; Material Formation; Shaping and Joining. [07H Lecture,+3H Lab					.ab]	
Emerging Materials; Sustainable Materials and Processes; Material Experience in Design						
[07H Lecture,+3H Lab]						
Text/Reference books:						
1.	1. Ashby, M. F., & Johnson, K. (2013). Materials and design: the art and science of material selection in					
	product design. Butterworth-Heinemann.					
2.	2. Lefteri, C. (2007). Making it: Manufacturing techniques for product design. Laurence King.					
3.	Ulrich, K. T. (2003	3). Product design and de	evelopment. Tata Mo	cGraw-Hill Education.		

Contact Hours:	I-2, T-0, P-2	Credit:	3			
Programme :	B Des	Semester :	IV			
	NII	Semester .				
Fie-lequisites.						
Evaluation scheme	Quiz I (15%), Midtern	າ (30%), Quiz II (15%), En	d term (40%)			
Course Detail-						
Complex products, des	sign as a strategic tool,	design and innovation, o	design process, user study, need			
identification.			[07H Lecture,+3H Lab]			
Sigma analysis of user	and product activity, u	ısability, material analysi	s, visual analysis, factor analysis.			
[07H Lecture,+3H Lab]						
Physiology analysis, technical analysis, environmental analysis, economic analysis, ideation, analogies,						
selection of an idea, detail design, [07H Lecture,+3H Lab]						
Design for culture, design for manufacture, design for assembly, product rendering, mock-up and						
prototype, final manufacture. [07H Lecture,+3H Lab]						
Text/Reference books	:					
1. Cross, N. (2008). Engineering design methods: strategies for product design. John Wiley & Sons.						
2. Whitten, J. L., Barlow, V. M., & Bentley, L. (1997). Systems analysis and design methods. McGraw-Hill						
Professional.		· · ·	-			

- 3. Cuffaro, D., &Zaksenberg, I. (2013). The Industrial Design Reference & Specification Book: Everything Industrial Designers Need to Know Every Day. Rockport Publishers.
- 4. Krippendorff, K. (2005). The semantic turn: A new foundation for design. crc Press.

Subject Code:	DS2012	Course Title:	Communication Design 2		
Contact Hours:	L-0, T-0, P-6	Credit:	3		
Programme :	B.Des	Semester :	IV		
Pre-requisites:	NIL				
Evaluation scheme	Quiz I (15%), Midter	m (30%), Quiz II (15%), E	nd term (40%)		
Course Detail-					
Introduction to Print Me	edia: Forms of Printin	g, History and Evolution	Interrelation of Print and Digital		
Technologies, Application	ons. Introduction to T	ypography	[07H Lecture,+3H Lab]		
Principles, Techniques a	nd Applications.		[07H Lecture,+3H Lab]		
Introduction to Photography: History and Evolution, Camera Principles, Techniques and Applications.					
Introduction to Moving pictures: History and Evolution of Cinema, Video and Animation; Principles					
Techniques and Applications. Visual Identity Design: [07H Lecture,+3H Lab]					
Introduction to Identity Design, Branding and Rebranding; Applications in - Stationary Design, Template					
Design, Souvenir Design, Signage Design and Web Design. Introduction to Human Computer Interface:					
Graphic User Interface, Characteristics, Principles and Applications. [07H Lecture,+3H Lab]					
Text/Reference books:					
1. Kipphan, H. (2001). Handbook of print media: technologies and production methods. Springer					
Science & Business	Media.				
2. Kernen A. D. (1997). Drivting Technology, Letters & Convert Labreen, Drivester University Dress					

- 2. Kernan, A. B. (1987). Printing Technology, Letters, & Samuel Johnson. Princeton University Press.
- 3. McLean, R. (1988). The Thames and Hudson manual of typography.
- 4. Craig, J. (1990). Basic Typography: a design manual. Watson-Guptill Publications.

Subject Code:	DS2013	Course Title:	Design Project 3	
Contact Hours:	L-3, T-0, P-2	Credit:	4	
Programme :	B.Des	Semester :	IV	
Pre-requisites:	NIL			
Evaluation scheme	Minor project (20%), Major project (30%), Weekly assignment (50%)			

OE2 Choose any one course from below electives

Subject Code	OE2E05		Course Title	Antenna Theory and Design		
Contact Hours	L-3,T-0, P-0		Credit	3		
Programme	B.Tech./B.Des		Semester	IV		
Pre-requisites	Electromagnetic Theory					
Evaluation scheme	Quiz I (10%), Midterm (30 %	%), Q	uiz II (10 %), Er	nd term (40 %) Project (10%)		
Module 1						
Fundamental Concep	ts: Radiation mechanism, Ra	adiat	tion pattern, ne	ear/far-field regions, directivity and		
gain, bandwidth, eff	fective aperture, polarizati	ion,	input impeda	nce, efficiency, Friis transmission		
equation, reciprocity	theorem, vector potentials fo	or ele	ectric and magr	etic current sources. [08H]		
Module 2						
Radiation from Wire	es and Loops: Infinitesima	al dip	pole, half-wave	e dipole, quarter-wave monopole		
antenna, small loop a	ntenna.			[08H]		
Module 3						
Aperture, Reflector a	nd Microstrip Antennas: Huy	ygen	s principie, rad	lation from rectangular and circular		
apertures, design co	nsiderations, Babinet's prin	icipie	e, Radiation in	om sectoral and pyramidal norns,		
antennas		USUI	ip antennas ar			
Module 4				[0011]		
Antenna Arrays: Ana	lysis of uniformly spaced Tw	vo-ele	ement and N-e	lement linear arrays with uniform		
and non-uniform excit	tation amplitudes. extension	top	lanar arravs. sv	nthesis of antenna arrays. [08H]		
Text Books:						
1. Antenna Theory: Ar	alvsis and Design, Constanti	ine A	. Balanis, Wilev	Indian Edition, 2005.		
2 Antenna and Wave	propagation ID Kraus TMH	4		,		
3 Antenna and Wave	propagation A R Harish and	d M	Sachidananda	Oxford University Press 2007		
Beference books:		a	Sacindanana,			
1 Electromagnetic W/	aves and Radiating Systems	FC	lordan and K G	Balmain Prentice Hall of India		
2005		L.C		. Baimain, Frentice Han of India,		
2003. 2 Elements of Electro	magnetics Mathew N O Sa	diku	Third Edition	Oxford Press		
2. Elements of Electro		uncu,	, mila Lattion,			
Subject Code	052005	<u>Cou</u>	rea Titla	Dackaging Dacign and Branding		
Subject Code:		Croc	ise mie:			
Programme ·	B Tech/B Des	Som	an. Aastar '	3 IV		
	NII	Jen	iester .			
Evaluation schome	$O_{\text{uiz}} \left(\frac{15\%}{15\%} \right) \text{ Midtorm} \left(\frac{20\%}{15\%} \right)$	Oui	7 11 (1E%) End 1	corm (40%)		
Evaluation scheme Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%)						
Course Detail-						
Digital Image Manipulation Applications						
Packaging Research and concentualization. Packaging Design Approaches and Techniques						
[07H artura +3H ah]						
Packaging Design Realization, Packaging Form and Elements. [07H Lecture +3H Lab]						
Text/Reference books:						

- 1. Van Roojen, P., & Hronek, J. (2010). Basic Packaging. Pepin Press.
- 2. Denison, E., & Ren, G. Y. (2001). packaging prototypes 3: Thinking Green (Vol. 3). RotoVision.
- 3. Pecht, M. (1991). Handbook of electronic package design (Vol. 76). CRC Press.
- 4. Bringhurst, R. (1992). The elements of typographic style (Vol. 127). Point Roberts: Hartley & Marks.

Subject Code:	OE2D06	Course 1	Title:	Interface Design			
Contact Hours:	L-2, T-0, P-2	Credit:		3			
Programme :	B.Des	Semeste	er:	IV			
Pre-requisites:	NIL						
Evaluation scheme	Quiz I (15%), Midterm	n (30%), Q	uiz II (15%), End	d term (40%)			
Course Detail				[074] Locturo +24 Lab	1		
Interface and interacti	, on components			[07H Lecture +3H Lab	7] 1		
Usability principles.	on, components			[07H Lecture,+3H Lab	ני 1		
Application of interfac	e design in product and	d space.		[07H Lecture,+3H Lab) 		
Text/Reference books	:	·					
1. Tidwell, J. (2010). [Designing interfaces. "C	D'Reilly M	edia, Inc.".				
2. Stone, D., Jarrett, C	., Woodroffe, M., & M	linocha, S	. (2005). User ir	terface design and evaluation.			
Morgan Kaufmann							
3. Baumann, K., & The	omas, B. (2002). User i	nterface o	design of electro	onic appliances. CRC Press.			
Subject Code:	OE2M06		Course Title	Fundamental of Robotics			
Contact Hours	L-3, T-0, L-0,		Credit	3			
Programme	B.Tech		Semester	IV			
Pre-requisites		torm (200	() Oui- II (100/)	rad torm (20%) Lab (20%)	_		
Course Detail :	Quiz I (10%), Ivilu	terni (20%	o), QUIZ II (10%)	, Elid terili (30%), Lab (30%)			
Module 1: Introduction				[02]	H1		
1. Introduction and	l Classification of robo	ts		L	.1		
2 Introduction to I	Mechanical Electrical	and Flectr	onics Flements	of robots such as joints links			
Module 2: Robot Kinem	atics			[11]	41		
1 Robot as Mecha	IVIOUULE 2. KODOL KITEITIALIUS						
2 Joints and degree	es of freedom						
2. Joints and degree	es of freedom						
J. Homogonoous t	ransformations Eulor	y Anglo					
 nomogeneous transformations, Euler Angle Direct kinematics of corial robots. Introduction to D. U parameters and its abusical significance. 							
5. Direct Kinematic	5. Direct kinematics of serial robots, introduction to D-H parameters and its physical significance						
7 Kinemetics of m	abila rabat Nan balar	omic and	l h a lan amia rah	oto			
7. Kinematics of m	A stuators	iomic and			.1		
1 Concors for robe	odule 3: Sensors and Actuators [05H]						
1. Sensors for robo	v and Acceleration and th		clensuls:				
	y and Acceleration sen	ISUIS					
D. Force, pressure	and Torque sensors						
c. Light, infrared, proximity and range finder sensors							
2. Actuators for robots: Introduction to servo and stepper motors, pneumatic and hydraulic actuators							
Module 4: Robot Motion and Control [08H]							
1. Brief introduction to trajectory planning for serial robots							
2. Reactive navigat	2. Reactive navigation for mobile robot						
3. Global navigation							
4. Trajectory-follow	ving control –basics of	feedback	and motion co	ntrol			
Module 5: Intelligent ro	bots			[02H	1]		
Intelligent robots: Programmable and autonomous							

Lab:

- 1. Demonstration of components of a robot
- 2. Practice on joints, links and degrees of freedom
- 3. Simulation of position and orientation of a robot
- 4. Simulation for forward kinematics of puma or similar robot
- 5. Simulation for kinematics of mobile robot
- 6. Inverse kinematics analysis of puma or similar robot
- 7. Practice on Sensors and actuators (2 labs)
- 8. Simulation and hardware implementation of Trajectory following robot (4 labs)

Text/Reference books:

- 1. Introduction to Robotics by Saeed B. Niku
- 2. Robot Motion and Planning by Choset
- 3. Introduction to Robotics: Mechanics and Control by Craig
- 4. Robot Modeling and Control by M. Spong, S. Hutchinson, and M. Vidyasagar

Evaluation scheme	Quiz I (10%), Midterm (20%), Quiz II (10%), End term (60%)				
Pre-requisites	NIL				
Programme	B.Tech/B.Des	Semester	IV		
Contact Hours	L-3, T-0, P-0	Credit	3		
Subject Code:	OE2S09	Course Title	Management Concept and Technology		

Course Detail :

Introduction to Operations Management:

Functional Subsystems of Organization, Definition, Systems Concept of Production, Types of Production Systems – Flow Shop, Job Shop, Batch Manufacturing, The Project, Productivity, Strategic Management – Corporate Strategic, Generic competitive Strategies, Functional Strategies, Gross Domestic Product and its impact, World Class Manufacturing. [06H]

Product & Process Design and Analysis:

Product Design and Analysis is (Definition), new product development - its concepts, Steps of Product Design, Process Planning and Design -Selection of Process, Process Selection Decision, Process Planning Design, Responsibilities of Process Planning Engineer, Steps in Process Planning. Process Design - Process Research, Pilot Development, Capacity Consideration, Commercial Plan Transfer, Enhanced Capacity Using Optimization. Value Analysis/Value Engineering – History of Value Analysis/Value Engineering, When to Apply Value Analyses is, Function, Aims, Value Engineering Procedure, Advantages and Application Areas. Standardization: Standardization Procedure, Advantages of Standardization, Application of Standardization. Ergonomic Considerations in Product Design. [09H]

Statistical quality control: Quality Improvement in the Modern Business Environment, the DMAIC Process Methods and Philosophy of Statistical Process, Control Charts for Variables, Control Charts for Attributes Process and Measurement System Capability Analysis [07H]

Plant Location & Plant Layout:

Factors Influencing Plant Location, Break -even Analysis. Single Facility Location Problem, Multi facility Location Problems –Model for Multi -facility Location Problem, Method of Transformation, Model to Determine X - Coordinates of New Facilities, Model to Determine Y - Coordinate, Plant Layout - Plant layout introduction, Classification of Layout, Advantages and limitations of Product Layout, Advantages and limitations of Group Technology Layout, Layout Design Procedures. [06H]

Scheduling:

Introduction, Johnson's Problem, Extension of Johnson's rule. Job Shop Scheduling: Introduction, Types of Schedules, Schedule Generation, heuristic Procedures, Priority Dispatching Rules. Two Jobs and Machines Scheduling. [04H]

Materials Management:

Integrated Materials Management, Components of Integrated Materials Management – Materials Planning, Inventory Control, Purchase Management, Stores Management. Inventory Control - Inventory Decisions, Costs Trade Off. Models of Inventory, Operation of Inventory Systems, Quantity Discount, Implementation of Purchase Inventory Model, Purchasing Management, Stores Management – Incoming Materials Control, Store Accounting, Obsolete Surplus and Scrap Management, ABC Analysis, XYZ Analysis, VED Analysis is, FSN Analysis, SDE Analysis. [08H]

Text/Reference books:

- 1. Panneerselvam "Production and Operations Management" PHI,2012
- 2. H.Kaushal, Production / Operations Management, Case Study Solutions, MacMillan, 2012.
- 3. Ajay K Garg, Production and Operations Management, TMH, 2012
- 4. B. Mahadevan, Operations Management: Theory and Practice, Second Edition, Pearson, 2010.
- 5. Danny Samson "Operations Management: Integrated Approach" Cambridge, 2012.
- 6. Kenneth K. Boyer, Rohit Verma, Operations Management: Cengage Learning, 2011.
- 7. Dipak Kumar Bhattacharyya, Production and Operations Management, Universities Press, 2012.
- 8. Prof. L.C. Jhamb: Production Operations Management, 18th ed ition, Everest Publishing House, 2013.
- 9. J.K, Sharma: Operations Research, Macmillian, 2013

Year Long Courses (Common for B.Des and B.Tech)

Subject Code:	PC2002	Course Title	Professional Development Course
Contact Hours	L-1, I-0, L-0,	Credit	1
Programme	B.Des/B.Tech	Semester	IV
Pre-requisites	NIL		
Evaluation scheme			
Course Detail :			
Strengthen Aptitude			
 (A). Reasoning Aptitut Syllogisms / D Analytical Reaso Logical Reaso Data interpresion Clocks & Cale Different patt Data arranger Data sufficient Coding Decode 	i de reductions asoning ning tation ndars erns of puzzles – Quant base ment analysis and critical rea icy ling and all others.	ed soning	
 (B). Quantitative Apt Vedic Mather Concepts and discount; age time and wor Concepts and number series 	itude natics concepts I Problem solving for time, Problems, number propert k etc. d Problem solving for pern s; word problem etc.	speed, and dis ties; ratio and nutation and c	stance; percentage; Profit, loss, and proportion; mixtures and solutions; combination; probability; geometry;
 (C). Verbal Aptitude General gram Comprehension Concept build words, verbal Advance read 	mar rules on and logic questions ding - reading comprehensi analogy, spotting errors in s ling comprehension	on, vocabulary entences etc.	building, confusing words, suitable

- Passage analysis
- Vocabulary testing
- Jumbled sentences
- Sentence improvisation

(D). Preparation for Psychometric Tests and Story Building Concepts

B.Tech Semester-V

Subject Code:	DS3001	Course Title:	Engineering Design - Including	
Contact Hours:	L-1, T-0, P-6		Design and Fabrication Project	
Programme :	B.Tech	Credit:	4	
Pre-requisites:	NIL	Semester :	V	
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%)			

Introduction to Engineering Design: Importance of Design, Design Philosophy, History of Design, Design Paradigm, the Design Process, Good Design, Engineering Analysis, Design phases, Product and Process Cycle. [06H]

Need Identification and Problem Definition:Identifying customer needs, Benchmarking, Quality FunctionDeployment, Engineering Design Specification[06H]

Concept Design: Creativity and Problem Solving, Functional requirements, Product Component Decomposition, Product Function Decomposition, Conceptual Decomposition, Generating Design Concepts, Product Form and Geometry, Product Aesthetics, Evaluating alternative Concepts, Theory of Inventive Problem Solving, Axiomatic Design, Concept Evaluation Methods, Decision Making. [06H] Embodiment Design: Introduction, Product Architecture, Configuration Design, Parametric Design, Best Practices, Industrial Design, Human Factors Design, Design For X (DFX) - Function, Assembly, Manufacture, Environment, Robustness, Reliability, Recyclability, etc. [06H]

 Materials Selection: Performance Characteristics of Materials, the Material Selection Process, Economics of Materials, Material Selection Methods.
 [08H]

Selection of Manufacturing Processes:Manufacturing Processes, Costs of Manufacturing, ProcessSelection.[04H]

Text/Reference books:

- 1. Ulrich, Karl.T. and Eppinger, Steven.D.(2012). Product Design and Development, McGraw-Hill
- 2. Buede, Dennis.M. (2009). The Engineering Design of Systems: Models and Methods, John Wiley & Sons inc

Course Code	CS3011	Course Title	Artificial Intelligence
Contact Hours	L-3,T-0,P-0	Credit	3
Program	B.Tech	Semester	V
Pre-requisites	None		

Evaluation Scheme	Quiz I (10%), Mid-Term (20%), Quiz II (10%), End term (40%), Project (20%)								
Learning Objective : The	students	will	understand	the	principles	and	development	of	artificial
intelligence. They will also	learn its m	any a	pplications in	diffe	rent areas.				

Course Details:

Module 1: Overview: foundations, scope, problems, and approaches of AI, Intelligent agents: reactive, deliberative, goal-driven, utility-driven, and learning agents, Artificial Intelligence programming techniques. Problem-solving through Search: forward and backward, state-space, blind, heuristic, problem-reduction, A, A*, AO*, minimax, constraint propagation, neural, stochastic, and evolutionary search algorithms, sample applications. **[10H]**

Module 2: Knowledge Representation and Reasoning: ontologies, foundations of knowledge representation and reasoning, representing and reasoning about objects, relations, events, actions, time, and space; predicate logic, situation calculus, description logics, reasoning with defaults, reasoning about knowledge, sample applications. Planning: planning as search, partial order planning, construction and use of planning graph. [10H]

Module 3: Representing and Reasoning with Uncertain Knowledge: probability, connection to logic, independence, Bayes rule, bayesian networks, probabilistic inference, sample applications, Decision-Making: basics of utility theory, decision theory, sequential decision problems, elementary game theory, sample applications. [10H]

Module 4: Machine Learning and Knowledge Acquisition: learning from memorization, examples, explanation, and exploration, learning nearest neighbour, naive Bayes, and decision tree classifiers, Q-learning for learning action policies, applications, Sample Applications of AI. [10H]

Text/Reference books:

- 1. N. J. Nilsson, Artificial Intelligence-A Modern Synthesis. Palo Alto: Morgan Kaufmann, 1998.
- 2. N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1981.
- 3. E. Rich, K. Knight, Artificial Intelligence, New York: McGraw Hill, 1991.
- 4. S.S.V Chandra, S. A. Hareendran, Artificial Intelligence and Machine Learning, PHI, 2014.

Subject Code:	EC3011	Course Title	Digital Communication	
Contact Hours	L-3, T-0, P-0	Credit	3	
Programme	B.Tech	Semester	V	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)			

[03H]

[10H]

Course Detail :

Review of Random Variables and Random Processes.

Optimum Receivers for the AWGN channel, Signal Design for bandlimited channels.

Digital Pass Band Transmission and Reception: Introduction to Pass band Transmission model: Generation, Detection, Signal space diagram, Error performance - Coherent and Non-coherent detection systems, bit error probability and Power spectra of BPSK, QPSK, FSK and MSK schemes, Differential phase shift keying, Comparison of Digital modulation systems using a single carrier - Carrier and symbol synchronization.[12H] Information theory and error control coding: Communication channel, Channel matrix, Channel capacity, Discrete memory less channels, Linear block codes - Cyclic codes - Convolutional codes - Maximum likelihood decoding of convolution codes-Viterbi Algorithm, Trellis coded Modulation. [07H] Overview of spread spectrum: Pseudo-noise sequences: a notion of spread spectrum: Direct sequence spread spectrum, Frequency hop spread spectrum, Maximum length and Gold codes. [10H]

Text/Reference books:

1. John G. Proakis, Masoud Salehi, "Fundamentals of Communication Systems" Pearson, 2005.

2. H. P. Hsu, "Analog and Digital Communications," Schaum's Series, Tata McGrawHill, 2e, 2006

3. Simon Haykins, "Communication Systems" John Wiley, 4th Edition, 2001

4. H. Taub, D. Schilling, and G. Saha, "Principles of Communication Systems," McGraw-Hill" 2013.

5. B. P. Lathi and Z. Ding, "Modern Digital and Analog Communication Systems," Oxford Univ. Press,

January 2009, 4/e.

6. S. Haykin and M. Moher, "An Introduction to Analog and Digital Communications," Wiley, January 2006, 2/e.

Subject Code:	ME3011	Course Title:	Heat Transfer		
Contact Hours:	L-3, T-0, P-2	Credit:	4		
Programme :	B.Tech	Semester :	V		
Pre-requisites:	NIL				
Evaluation scheme					
Course Detail :					
1. Introduction to heat	transfer		[06H]		
2. Conduction: Fourier	's Law, One dimensio	onal heat transfer, with an	d without heat generation, Transient		
conduction, Through Composite walls. [10H]					
3. Extended Surfaces: Heat transfer from finned surfaces, Fin Efficiency, Effectiveness. [08H]					
4. Convection: Free and forced convection, Flow and thermal boundary layer equations, laminar flow					
through circular pipe, constant heat flux and constant wall temperature conditions, Overall heat transfer					
coefficient. Heat exchangers. [10H]					
5. Thermal Radiation: Radiation properties, Plank's Law, Kirchoff's law, Heat exchange between two					
surfaces			[08H]		
Text/Reference books	:				
1 Eurodamentals of	Heat and Mass	Transfor E P Incr	opera and D.P. Dewitt (Wilow)		

1. Fundamentals of Heat and Mass Transfer, F. P. Incropera and D.P. Dewitt (Wiley).. 2. Heat and Mass Transfer, JP Holman

Subject Code:	D\$3009	Course Title:	Service Design			
Contact Hours:	I-2 T-0 P-2	Credit:	3			
Programme :	B Des	Somostor ·	V			
	D.Des	Semester .	v			
Pre-requisites:	NIL					
Evaluation scheme	Quiz I (15%), Midterm (30%),	Quiz II (15%), End t	.erm (40%)			
Course Detail:						
Provides insights into the	relationships between people,	technology (in the	broadest sense of the word -			
paper is a technology) and	d design.		[07H Lecture,+3H Lab]			
Using cultural and design	theories as frameworks it expl	ores through hand	s-on design projects and case			
studies the ways in which	service design practices creativ	vely engage with ne	ew trends in society			
Interview of the service design practices creatively engage with new trends in society.						
The ways in which technologies change seciety, and the ways in which people (years) shape design						
The ways in which technologies change society, and the ways in which people (users) shape design						
practices.			[07H Lecture,+3H Lab]			
Reconsider designers and users as the ultimate authors of all new designs, technologies or services.						
[07H Lecture,+3H Lab]						
Text/Reference books:						
1. ERL, T. (2008). SOA: principles of service design (Vol. 1). Upper Saddle River: Prentice Hall.						

- 2. This is service design thinking: Basics, tools, cases. BIS, 2012.
- 3. Macintyre, M., Parry, G., & Angelis, J. (Eds.). (2011). Service design and delivery. Springer Science & Business Media.

Subject Code	DS3010	Course Title	Sustainable Design	
Contact Hours	L-2, T-0, P-2	Credit	4	
Programme	B.Des	Semester	5	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%)			
			10-11-1 A.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I	

Sustainable design principles.

[07H Lecture,+3H Lab]

Physical, mental, spiritual, cultural, social, ethical and economic issues in designing for sustainability.

[07H Lecture,+3H Lab] Ecological footprints, ecosystem impact. Waste, reuse and recycling, benign emissions, green design, integrated DFE/Eco design, [07H Lecture,+3H Lab] Design for sustainability, eco innovation, system-wide product/service strategies, sustainable consumption, health, modeling and mapping. [07H Lecture,+3H Lab]

Text/Reference books:

- 1. Williams, D. E. (2007). Sustainable design: Ecology, architecture, and planning. John Wiley & Sons.
- 2. Bhamra, T.& Lofthouse, V. (2007). Design for sustainability: a practical approach. Gower Publishing, Ltd.
- 3. Vallero, D. A., &Brasier, C. (2008). Sustainable design: the science of sustainability and green engineering. John Wiley & Sons

Subject Code:	D\$3011	Course Title	Design Management		
Subject code.					
Contact Hours:	L-2, T-0, P-2	Credit:	3		
Programme :	B.Des	Semester :	V		
Pre-requisites:	NIL				
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End	term (40%)		
Skills, knowledge and	learning style evaluation	on, personal goal settir	ng and professional development		
planning.			[07H Lecture,+3H Lab]		
Insight into the contex	t that businesses and or	ganizations operate in, h	ow they view and use design, and		
their relationship with	designers.		[07H Lecture,+3H Lab]		
Examine the roles of de	esign and innovation in a	chieving organizational o	bjectives. [07H Lecture,+3H Lab]		
To bring together the la	anguages of design and b	ousiness, it considers org	anizational objectives, how design		
and innovation deliver	value and return on inve	stment is evaluated.	[07H Lecture,+3H Lab]		
Text/Reference books:					
1. Best, K. (2006). Design management: managing design strategy, process and implementation. AVA publishing.					
 Cooper, R., Jungin Black. 	ger, S., & Lockwood, T.	(Eds.). (2013). The hand	book of design management. A&C		

3. Martin, R. L. (2009). The design of business: Why design thinking is the next competitive advantage. Harvard Business Press.

OE1 Choose any one course from below electives

Subject Code:	OE3C24	Course Title	Parallel Computing			
Contact Hours	L-3, T-0, P-0	Credit	3			
Programme	B.Tech	Semester	V			
Pre-requisites	NIL					
Evaluation scheme	Quiz I (15%), Mid term (309	//), Quiz II (15%), End term (40%)			
Course Detail :						
Paradigm of Parallel Cor	nputing: Flynn's taxonomy, P	Pipelining, SIMD, MIMD, Clas	sification of parallel			
computers			[05H]			
Programming Parallel Co	Programming Parallel Computers: Parallel Programming, Parallel Languages, Cognitive Training [04H]					
Connectivity: Synchronizing Communications, role of Memory, Network design, System Interconnections						
[04H]						
Data Flow Computer: dataflow graphs, elements of dataflow computers [04H]						
Software Issues in Parallel Computing: ideal Situation, using existing serial programs [04H]						
Text/Reference books:						
1. Elements of Parallel Computing, V Rajaraman, Prentice Hall, 2006						
2. Parallel Computing: P	2. Parallel Computing: Principles and Practice, T. J. Fountain, Cambridge University press, 2006					

Subject Code:	OE3E25	Course Title	VLSI Design Modeling
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	V
Pre-requisites	NIL		
Evaluation scheme			
Course Detail :			
Text/Reference book	s:		

Subject Code:	OE3E25	Course Title	VLSI Design Modeling
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	V
Pre-requisites	NIL		
Evaluation scheme			
Course Detail :			
Text/Reference books:			

Subject Code:	OE3M26	Course Title	Computer Aided Design		
Contact Hours	L-3, T-0, P-0	Credit	3		
Programme	B.Tech	Semester	VI		
Pre-requisites	NIL				
Evaluation scheme	Quizzes (20%); Mid-sem	(20%) Programm	ing Project (20%) and End sem (409	%)	
Course Detail :					
Introduction:					
Objective, scope, ove	erview, CAD software, ma	thematical backg	round, applications	[04H]	
Transformations:					
Rotation, translation,	, scaling, reflection, shear	and combined tr	ansformations in 2D and 3D, comp	uter-	
aided assembly				[06H]	
Projections:					
Orthographic, axono	metric, oblique and persp	ective projection	S	[04H]	
Curves:					
Parametric represent	tation of analytic curves, r	representation of	synthetic curves- Hermite/ Ferguse	on,	
Bezier, B-spline, ratio	onal curves, NURBS/NUBS	, curve manipulat	ions, Analytical properties	[10H]	
Surfaces:					
Surface representation	on, parametric representa	ation of analytic s	urfaces- plane, ruled, surface of		
revolution etc., repre	esentation of synthetic sur	rfaces- Hermite, I	Bezier, B-spline, coons, sculptured e	etc.,	
surface manipulation	s, curves on surfaces, sur	face with irregula	r boundaries, analytic properties,		
application in reverse	e engineering, design of tu	urbine blades etc.		[08H]	
Solids:					
Introduction, represe	entation of solids, fundam	entals of solid mo	odeling, solid representation schem	nas	
(B-rep, CSG, Sweep, A	ASM etc), solid manipulat	ions, solid modeli	ng-based applications in manufact	uring	
and assembly (CNC n	nachining, Rapid prototyp	ing).		[08H]	
Advanced Topics:				[0011]	
Geometric modeling	using point clouds, CAD/C	LAIVI data exchan	ge	[02H]	
1 ext/Reference bool		in De indefini			
1. Zeid, Ibraheim, CA	D/CAM: Theory and Pract	Revised First	Edition, Tata McGraw Hill,2007.	2002	
2. Rogers, D.F and Ac	lams, J.A., Mathematical I	Elements for Com	puter Graphics, Tata McGraw Hill,	2002.	
3. Mortenson, Michael E., Geometric Modeling, Third Edition, Industrial Press Inc., 2006.					
4. Saxena and Sahay, Computer Aided Engineering Design, Anamaya Publications					
5. Faux, I. D. and Pratt, IVI. J., Computation Geometry for Design and Manufacture, John Wiley (Ellis					
HORWOOD LLO.), 1983. 6. Choi: P. K. Surface Modeling for CAD/CANA Electrica					
 b. Choi, B. K., Surface Modeling for CAD/CAM, Elsevier. 7. Farin, Carald, Curves and Surfaces for Computer Aided Coomstrip Design. A Practical Cuida. 					
Academic Bross Inc 1991					
ACADEMIC Press Inc. 1991.					
8. Lee, Kuriwoo, Principles of CAD/CAN/CAE Systems, Addison Wesley, 1999.					
10 Ryan D L Comm	9. Yamaguchi, Curves and Surfaces in Computer Aided Geometric Design, Springer, 1988.				
10. ryan, D. L., Comp	ater-Alueu Graphics allu	Design, Ividicei D	CNNCI IIIC., 1334.		

Subject Code:	0521427		Vibration of		
		Course little	To noise and the second		
Contact Hours	L-3, I-U, P-U D Talah	Cualit	Niechanical Systems		
Programme	B.Tech	Credit	3		
Pre-requisites		Semester	V		
Evaluation scheme	Quizes (20%); Mid-sem	(35%) and End-sem (45%			
Course Detail :					
Introduction to vibration a	nd un-damped free vibra	tions:			
Types of vibrations. Single d	legree of freedom system	s and Simple problems.	Formulation- Newton's		
second law, Energy method	and Principle of virtual w	ork. Introduction, undar	nped free vibration –		
natural frequency of free vil	bration, stiffness of spring	g elements, effect of mas	is of spring. [10H]		
Damped free vibrations:					
Single degree freedom syste	ems, different types of da	mping, concept of critica	al damping and its		
importance, study of respon	ise of viscous damped sys	stems for cases of under	damping, critical and		
over damping, Logarithmic	decrement.		[06H]		
Forced Vibration:					
Single degree freedom syste	ems, steady state solution	i with viscous damping d	ue to narmonic force,		
solution by complex algebra	a. Concept of response, Re	eciprocating and rotating	g unbalance, vibration		
isolation – transmissibility r	atio. Energy dissipated by	damping, snarpness of i	resonance, base		
excitation.	of fue odowo		[U8H]		
Systems with two degrees	or and normal modes of t	ubration co ordinato co	upling generalized and		
nitroduction, principal mod	vibration in terms of initia	al conditions. Coored sys	toms Forced Oscillations		
– Harmonic excitation Appl	ications: (a) Vahiela susp	an conditions. Geared sys	tion absorbor (c)		
Dynamics of Reciprocating R	Engines	ension (b) Dynamic vibra			
Numerical methods for Mu	Iti dagraa Eraadam Systa	me	[0511]		
Orthogonality of principal modes Holzer's method Rayleigh's method					
Vibration monitoring and analysis:					
Introduction Acceleromete	r and vibrometers Machi	nerv signatures. Selectio	n of Transducers and		
signal conditioning Analysis	signal conditioning Analysis Techniques, Machine failure modes, Measurement location, Vibration				
severity criteria vibration frequency analysis Case studies					
Text/Reference books:			[0011]		
1 Thomson W T Theory o	f vibration with applicatio	ons Third Edition 1997			
2. Rao, S. S., Mechanical Vibrations, Fourth Edition, Addison Wesley, 2004					
3. Caollacott, R. A.: Chapman, Mechanical Fault Diagnosis and Condition Monitoring, Chapman and					
hall 1977					
4. Rao. J. S., Advanced Theo	4 Rao I S Advanced Theory of Vibration Wiley Fastern Ltd New Delhi 1992				
5. Jones, R. J. and Wykes. C.	. Holographic and Speckle	e Interferometry. Cambri	dge University Press.		
Cambridge, 1983	,	,,	J		

Subject Code:	DS5011	Course Title:	Applied Ergonomics		
Contact Hours:	L-2, T-0, P-2	Credit:	3		
Programme :	B.Des	Semester :	V		
Pre-requisites:	NIL				
Evaluation scheme	Quiz I (15%), Midterm (3	0%), Quiz II (15%), End t	erm (40%)		
Course Detail :	Course Detail :				
Ergonomics in transportation design, [07H Lecture,+3H La					
Medical equipment design, [07H I			[07H Lecture,+3H Lab]		
Ergonomics in toy and game design. [07H Lecture,			[07H Lecture,+3H Lab]		
Ergonomic principles in developing pleasurable products etc.			[07H Lecture,+3H Lab]		
Text/Reference books:					
1. Burke, M. J. (1991). Applied ergonomics handbook. CRC Press.					
2. Karwowski, W., & Marras, W. S. (Eds.). (1998). The occupational ergonomics handbook. CRC Press.					

3. Duffy, V. G. (Ed.). (2008). Handbook of digital human modelling: Research for applied ergonomics and human factors engineering. CRC press.

Subject Code	DS5012	Course Title	Visual Ergonomics	
Contact Hours	L-2, T-0, P-2	Credit	4	
Programme	B.Des	Semester	5	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End	term (40%)	
Course Detail :				
Visual ergonomic principles, [07H Lecture			[07H Lecture,+3H Lab]	
Ergonomics in typogra	aphy.		[07H Lecture,+3H Lab]	
Ergonomics in cartogr	aphy.		[07H Lecture,+3H Lab]	
Ergonomics in information	ation design.		[07H Lecture,+3H Lab]	
Text/Reference books:				

- 1. Anshel, J. (Ed.). (2005). Visual ergonomics handbook. CRC Press.
- 2. Anshel, J. (2002). Visual ergonomics in the workplace. CRC Press.
- 3. Woodson, W. E., Tillman, B., & Tillman, P. (1992). Human factors design handbook: information and guidelines for the design of systems, facilities, equipment, and products for human use.

Subject Code:	OE3D25	Course Title	Lighting Design		
Contact Hours	L-2, T-0, P-2	Credit	3		
Programme	B.Des	Semester	V		
Pre-requisites	NIL				
Evaluation scheme	Assignment I (15%), Midter	rm (30%), Assignment I	l (15%). End term (40%)		
Learning Objective: T	ne course will help to develo	p basic knowledge abo	ut Illumination ngineering	and	
its application in space	e. It will also help to develop	the idea about method	ds and tools required for the termination of the second second second second second second second second second	he	
lighting design in both	interior and exterior spaces	•			
Detailed Course Conte	ent:				
Module 1 : Fundamen	tals of Illumination Engineer	ing, Photometric stand	ards Measurement of		
Photometric quantities. Colorimetry [10H]					
Module 2 : Visual system-structure. continuous adjustment of photopic, scotopic and mesopic vision,					
visual perception, Glare. [10H]					
Module 3 : Basic conce	epts of lighting design- desig	n objectives, design pa	rameters, qualitative &		
quantitative evaluatio	quantitative evaluation of lighting "systems. [10H]				
Module 4 : Lighting Guidelines, Lighting Design Tools. Case Studies. [10H					
Text/Reference books:					
1. Meshkov, V. V. (1981). Fundamentals of illumination engineering, Mir.					
2. Handbook, I. L. (1995). Illuminating Engineering. Society, USA.					

3. Steffy, G. 2002 . Architectural lighting design. John Wiley & Sons.

ubject Code:	DS3015	Course Title:	Design Forecasting	and Trend	
Contact Hours:	L-3, T-0, P-0		Research		
Programme :	B.Des	Credit:	3		
Pre-requisites:	NIL	Semester :	VI		
Evaluation scheme	Quiz I (15%), Midter	m (30%), Quiz II (15%), End term (40	%)	
Competitor product and	alysis,			[07H Lecture,+3H Lab]	
Future trends,				[07H Lecture,+3H Lab]	
Patent Search / Review of IP,			[07H Lecture,+3H Lab]		
International developm	ents study and, new i	materials and pro	cesses review.	[07H Lecture,+3H Lab]	
Text/Reference books:					
1. Raymond, M. (2010). The trend forecaster's handbook. Laurence King.					
2. Kahn, K. B. (2010). N	2010). New-Product Forecasting. John Wiley & Sons, Ltd.				
3. Mendelsohn, L. B. (2	Mendelsohn, L. B. (2000). Trend forecasting with technical analysis.				

OE04 (Choose any one course from below electives)

Course Code	OE3C28	Course Title	Cyber Security		
Contact Hours	L-2, T-0, P-3	Credit	3		
Program	B.Tech/B.Des	Semester	VI		
Pre-requisites	None				
Evaluation Scheme	Quiz I (10%), Mid-Term (20%), Lab (20%), End term (40%), Project (10%)				
Learning Objective : This course is aimed at giving students the introductory concepts of Cyber Security. The course will introduce the concepts of Cybersecurity and will enable the students to create secure networking infrastructure.					
Course Details:					
Module 1: Introduction: Basics of cybersecurity, cyber attacks, attack vectors, vulnerability assessment,					

Threat analysis and modeling, cyber laws and ethics.

Module 2: Identifying and defending against cyber attacks: Dictionary attacks, Software exploits- SQL Injection, XSS; Social engineering exploits- phishing attacks; Network attacks- MITM, Broadcast storms, session hijacking, denial of service, zero day vulnerabilities. [10H]

Module 3: Intrusion Detection and Prevention: Firewalls, anti virus softwares, Intrusion detection tools, defending against malicious software, hardening operating system, honeypots, data security. [08H]
 Module 4: Malware analysis and Defense: Types of malware, malware analysis techniques, malware functionalities: malware behaviour, covert malware launching, malware-focused network signatures; static malware analysis: antivirus scanning, reverse engineering; dynamic malware analysis: sandboxing,

Cybersecurity Lab:

[32H]

[10H]

- 1. Setting up an virtual lab for cybersecurity experiments.
- 2. Understanding the basic assessment tools:- ifconig, whois, nslookup, ping, traceroute, telnet
- 3. Network monitoring tools: wireshark, snort, metasploit, nmap, tcpdump"
- 4. Burp suit & DVWA for software exploits and defense: SQL injection, XSS, etc."
- 5. Performing and defending against network exploits: MITM, session hijacking, ARP spoofing, etc."
- 6. Installing snort IDS for log assessment.
- 7. Using IP tables in linux to create firewalls.
- 8. Analyzing malware behaviour and launching covert malwares, building trojans
- 9. Static malware analysis techniques: anti virus scanning, hashing, reverse enigineering

10. Dynamic malware analysis techniques: sandboxes, registry comparison with regshot, debugging with OLLYDBG

11. Project.

Text/Reference books:

1. Brooks, Charles J., Grow, Christopher, Craig, Philip A., Short, Donald, "Cybersecurity Essential" by Sybex

2 . John Snowden, "Cybersecurity: An Ultimate Guide to Cybersecurity, Cyberattacks, and Everything you should knw about being safe on the Internet", willey.

"3. Georgia Weidman, "Penetration Testing: A Hands-On Introduction to Hijacking", no starch" press

"4. Michael Sikorski and Andrew Hoing, "Practical Malware Analysis: A Hands-On Guide to Disecting Malicious Software", no starch press

Course Code	CS8007	Course Title	Social Network Analysis
Contact Hours	L-3, T-0, P-0	Credit	3
Program	B.Tech/B.Des	Semester	VI
Pre-requisites	None		
Evaluation Scheme	Assignments (10%), Project (20%), Midterm (30%), End term (40%)		

Learning Objective :

1. To enable the students to master the knowledge about network growth models and their Characteristics.

2. Formalize different types of entities and relationships as nodes and edges and represent this" information as relational data

- 3. Use advanced network analysis software to generate visualizations and perform empirical investigations of network data.
- 4. Interpret and synthesize the meaning of the results with respect to a question, goal, or task."
- 5. Collect network data in different ways and from different sources while adhering to legal standards and ethics standard.

Course Details:

Module1:

Introduction: How services such as Facebook, LinkedIn, Twitter, etc. are using SNA to understand their users and improve their functionality.

Network Concept: Introduction, Graphs, Paths and components, Adjacency Matrices, Ways and Mod	les, [овн]
Mathy Froduct, hode degree, types of hodes and types of ties, actor attributes	loon]
Random network models: Erdos-Renyi, Barabasi-Albert, Watts-Strogatz, small-world model, shortes path. six degree of separation	st
Social Network Visualization Tools: Gephi, NetLogo, Pajek, EgoNet	08H]
Module3:	-
Characterizing whole network: Cohesion, reciprocity, Transitivity and clustering Coefficient, Triad census	
Network centrality: Undirected Non-valued networks, Degree, Eigenvector, betweeness Directed Non-valued Non-value	n-
valued, Networks: Degree, Eigenvector, closeness.	
Valued Networks, Negative tie	
Community Detection: clustering, community structure, modularity, overlapping communities [10H]
Module4:	
Link Prediction The Katz Score, Hitting & Commute Time, Rooted PageRank, SimRank, Predictors	
Summary, Meta-measures	
Information Diffusion: Cascading Behavior, Herd Behavior, Information, Cascade Model, Threshold	
Model, Cascade Maximization, Epidemic Modeling.	<u>08</u> H]
Module 5:	
Security and Privacy in Social Network: Introduction, K-Anonymity, L-Diversity, Q-Anon,	[1100]
Text/Reference books:	
1. Liu, Bing, Web data mining. Springer-Verlag Berlin Heidelberg, 2007.	
2. Chakrabarti, Soumen, Mining the Web: Discovering knowledge from hypertext data, Morgan	
Kaufmann, 2003.	
3. Scime, Anthony, ed. Web mining: applications and techniques, IGI Global, 2005.	
4. Hitzler, Pascal, Markus Krotzsch, and Sebastian Rudolph, Foundations of semantic web technologie CRC Press, 2011.	es,
5. King, Andrew B. Website optimization. "O'Reilly Media, Inc.", 2008.	
6. Segaran, Toby. Programming collective intelligence: building smart web 2.0 applications, "O'Reilly	
Media, Inc.", 2007.	
7. Charu.C. Aggarwal, Social Network Data Analytics, Springer Science+Business Media, LLC, 2011	

Subject Code:	OE3E29	Course Title	Industrial Microwave and
Contact Hours	L- 3 , T- 0 ,P- 0		Communication
Programme	B.Tech/B.Des	Credit	3
Pre-Requisites	Electromagnetics	Semester	VI
Fuel wetten och om o			

Evaluation schemeQuiz I (25 %), Midterm (25%), Quiz II (25 %), End term (25 %) Project (%)

Course Detail

Module 1

Waveguide Components: Overview of Attenuators, Phase Shifters, Matched Loads, Detector Mounts,Slotted Sections, E and H Plane Tees, etc. Signal Generators: Fixed Frequency, Sweep Frequency andSynthesized Frequency Oscillators, PLL for high frequency generation[10H]

Module 2

Industrial Microwave: Noise Sources and Noise meters used in microwave measurements, frequency meters and VSWR meters, Measurement of frequency, attenuation, VSWR and impedance, cavity measurements: Q factor, bandwidth; Dielectric and magnetic properties of materials: Cavity and waveguide methods, Measurement of Power: Calorimetric and Microwave bridges; principles of Time and frequency domain reflectometry, Spectrum Analyser and Network Analyser, Measurement of Scattering parameters of passive and active devices [10H]

Module 3

Processes in Industrial Microwave: Microwave in process control instrumentation, Microwave waste disposal, Microwave in agriculture and medicine, hyperthermia, etc. Microwave Heating, Microwave absorbers, EMC and EMI [10H]

Module 4

Microwave Communication: Microwave Radio and its components, Free space propagation model, ground reflection, Earth and its effect on propagation, Clutter theory, Fresnel Zones: First and Second order Fresnel Zones, Signature width of radio, tolerance limits, Practical Link Budget calculations, Atmospheric Attenuation [10H]

Text Books:

1. Microwave Devices and Circuits, Samuel Y Liao, Pearson

2. Microwave Engineering, David M Pozar, Wiley

3. Microwave Measurements, Ananjan Basu, CRC Press

Reference books:

1. T.S. Rappaport, "Wireless Communications," Pearson Education, 2003.

Subject Code:	OE3D12	Course Title	Communication Skills		
Contact Hours	L-3, T-0, P-0		Management		
Programme	B.Tech/B.Des	Credit	3		
Pre-requisites	NIL	Semester	VI		
Evaluation scheme	Presentation (15%), Midter	rm (30%), Group	Discussion (15%), End term (40%)		
Learning Objective:					
• To prepare all the	students for placements in c	ampus recruitmo	ents.		
• To facilitate stude	nts with cognitive, behaviora	al, social and psy	chological underpinnings with		
communication					
• To enable student	s to display their working kn	owledge in Englis	sh communication skills in both		
academia and rea	lia.				
Module 1 : Self-introdu writing - Intensive read information - Listening communication appreh Module 2 : Casual inter Constructive and destru Survival communication Module 3 : Essentialitie - Understanding employ language and culture - I -Understanding the pro and professionalism Module 4 : Positive and Grasping and profound analysis - Creativity and Understanding and equi intelligence Module 5: Technical Pro topics - Mock interview - Self-evaluation and per	ctions - Giving impromptu ta ing and extensive reading - N to a panel discussion – Critic ension and inhibition factions — Chatting — Person active communication - Shari n - Silent communication Cor es of English in oral and writte yer perceptions - Understand Updating the functional notion ofile of the company - Perform d constructive intuitions - Se understanding - Surface and l innovative skills - Steadfast ipping inherited talents and resentations - Open and clos es - Small talk - Writing short eer review of group discussio	alks - Extempore lote taking – Not al appreciation a nal and social co ing sheer knowle nvivial communi en business com ding job-specific ons of Multinatio ming both hard a lf-assumptions a l deeper memory ness and assertiv skills to craftsma ed group discuss notes - Eliciting a ns	speech - Comprehensive reading and :e making - Listening to specific nd reviews -Overcoming [08H] mmunication - Public speaking skills - :dge, beliefs and conventions - cation [10H] munication - Strong business acumen industrial demands - Refined body onal Corporations (MNC) and soft skills – Business etiquette [08H] nd perceptions - Keen observations - y skills – Critical thinking and logical veness in communication — anship - Emotional and social [08H] ions on technical and contemporary and reporting work related enquiries [08H]		
Text/Reference books:					
1. Comfort. Jeremy, et al. (2011). Speaking Effectively: Developing Speaking Skills for Business English.					
Cambridge: Cambridge University Press.					
2. Kenneth Andersor	ו, Joan Maclean, (2013). Tonי	y Lynch, Study S <mark>r</mark>	peaking, 2nd Edition, UK: cambridge,		
University Press.					
3. Rizvi, Ashraf. (201	7). Effective Technical Comm	unication. McGr	aw-Hill India.		
4. Rutherford, Andre	a J. (2001). Basic Communica	ation Skills for Te	chnology. New Delhi: Pearson		
Education.					

- 5. Michael Cornwall. Go Suck a Lemon: Strategies for Improving Your Emotional Intelligence. Kindle Edition.
- 6. Travis Bradberry and Jean Greaves (2005). The Emotional Intelligence Quick Book. Touchstone Publications.

Subject Code:	OE3D20	Course Title:	Industrial Design (Elective 1)		
Contact Hours:	L-2, T-0, P-2	Credit:	4		
Programme :	B.Tech/B.Des	Semester :	6		
Pre-requisites:	NIL				
Evaluation scheme	Quiz I (15%), Midterm	n (30%), Quiz II (15%), E	nd term (40%)		
Course Detail-					
Industrial design appli	[07H Lecture,+3H Lab]				
Industrial design application in interior and space design.			[07H Lecture,+3H Lab]		
Industrial design application in transportation design.			[07H Lecture,+3H Lab]		
Industrial design application in display and control design.			[07H Lecture,+3H Lab]		
Text/Reference books:					

1. Arden, P. (2003). It's not how good you are, it's how good you want to be. Phaidon.

2. Hirschberg, J. (1999). The creative priority: Putting innovation to work in your business.

3. Cross, N. (2008). Engineering design methods: strategies for product design. John Wiley & Sons.

Subject Code	OE3M04	Course Title	Computer Aided Manufacturing
Contact Hours	L-3, T-0, P-0	Credit	3
Programme:	B.Tech/B.Des	Semester	VII
Pre-requisites:	NIL		
Evaluation scheme	Quiz: Mid-sem: Project: End-sem		
Objective: To analyze different aspects of CAM, CNC programs, basics robotics, material handling system,			

production management system and thus, create interdisciplinary thoughts

Unit 1:

Computer aided manufacturing: CAM concepts, objective sense scope, nature and type of manufacturing system, evolution, benefits of CAM, role of management in CAM, concepts of computer integrated manufacturing ,impact of CIM on personal, role of manufacturing engineers, CIM basic functions [08H] Unit 2:

NC/CNC machine tools: NC and CNC technology: types, classification, specification and components, construction details, controllers, sensors and actuators, CNC hardware: circulating ballscrew, fiction slides, step/servomotors. Axis designation, NC/CNC Tooling, fundamental programming, types of format, part programming, programming for drilling, lathe and milling, canned cycles, parametric subroutines

[08H]

Unit 3:

Programmable logic controllers: Relay device components, programmable controller architecture,programming a programmable controllers, tools for PLC logic design[06H]Unit 4:

Flexible manufacturing system and automated guided vehicle system: Types of flexibility, FMS components, FMS application and benefits, FMS planning and control, quantitative analysis, simple problems. Automated guided vehicle system- Application, vehicle guidance technology, vehicle management and safety [08H]

Unit 5:

Industrial robotics : Robot anatomy and related attributes:classification of robots, robot control systems, end effectors, sensors, accuracy and repeatability, Industrial robot application, robot part programming, simple problems [06H]

Text or References:

Subject Code:	OE3M27	Course Title	Vibration of Mechanical Systems
Contact Hours	L-3, T-0, L-0	Credit	3
Programme	B.Tech/B.Des	Semester	VI
Pre-requisites	NIL		

Evaluation scheme Quizes (20%); Mid-sem (35%) and End-sem (45%)
Course Detail :
Introduction to vibration and un-damped free vibrations: Types of vibrations. Single degree of freedom
systems and Simple problems. Formulation- Newton's second law, Energy method and Principle of virtual
work. Introduction, undamped free vibration – natural frequency of free vibration, stiffness of spring
elements, effect of mass of spring. [10H]
Damped free vibrations: Single degree freedom systems, different types of damping, concept of critical
damping and its importance, study of response of viscous damped systems for cases of under damping,
critical and over damping, Logarithmic decrement. [06H]
Forced Vibration: Single degree freedom systems, steady state solution with viscous damping due to
harmonic force, solution by complex algebra. Concept of response, Reciprocating and rotating unbalance,
vibration isolation – transmissibility ratio. Energy dissipated by damping, sharpness of resonance, base
excitation. [08H]
Systems with two degrees of freedom: Introduction, principal modes and normal modes of vibration, co-
ordinate coupling, generalized and principal co-ordinates, free vibration in terms of initial conditions.
Geared systems. Forced Oscillations – Harmonic excitation. Applications: (a) Vehicle suspension (b)
Dynamic vibration absorber (c) Dynamics of Reciprocating Engines. [09H]
Numerical methods for Multi degree Freedom Systems: Orthogonality of principal modes, Holzer's
method, Rayleigh's method. [04H]
Vibration monitoring and analysis: Introduction, Accelerometer and vibrometers. Machinery signatures,
Selection of Transducers and signal conditioning. Analysis Techniques, Machine failure modes,
Measurement location, Vibration severity criteria, vibration frequency analysis. Case studies. [05H]
Text/Reference books:
1. Thomson, W.T., Theory of vibration with applications, Third Edition, 1997.
2. Rao, S. S., Mechanical Vibrations, Fourth Edition, Addison Wesley, 2004.
3. Caollacott, R. A.; Chapman, Mechanical Fault Diagnosis and Condition Monitoring, Chapman and hall, 1977.
4. Rao, J. S., Advanced Theory of Vibration, Wiley Eastern Ltd. New Delhi, 1992.
5. Jones, R. J. and Wykes, C., Holographic and Speckle Interferometry, Cambridge University Press, Cambridge, 1983

Course Code	OE3M31	Course Title	Machine Learning	
Contact Hours	L-3,T-0,P-0	Credit	3	
Program	B.Tech/B.Des	Semester	VI	
Pre-requisites	None			
Evaluation Scheme	Quiz I (10%), Mid-Term (20%), Quiz II (10%), End term (40%), Project (20%)			
Learning Objective : In this course students will learn to train the machine using different machine				
algorithms to solve the real-world prediction problems.				
Course Details:				
Madula 4. Learning Ducklass, Deciming a Learning Custom, Types of Learning, Customics Learning, Lincol				

Module 1: Learning Problem, Designing a Learning System, Types of Learning. Supervise Learning: Linear

and Logistic regression, Decision Tree Learning.

Module 2: Instance-Based Learning, kNN and CBR, Bayesian Learning, Naive Bayes Classifier, Artificial Neural Network (ANN), SVM. [10H]

Module 3:Unsupervised Learning: Mixture Models and EM, Clustering, K-Means, DBSCAN, Hierarchicalclustering, Association Rule Mining, Dimensionality Reduction.[10H]

Module 4: Performance Evaluation, Confusion Metrics, Evaluating Hypotheses, Confidence Interval, Hypothesis Testing Ensemble Learning Bagging and Boosting Formulating. Computational Learning Theory, Issues and practical advice in Machine Learning. [10H]

Text/ Reference books:

- 1. Tom Mitchell. Machine Learning, McGraw Hill, 1997.
- 2. Chris Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
- 3. Stephen Marsland, Machine Learning an Algorithmic Perspective, Chapman and Hall/CRC, 2014.
- 4. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine Learning (Adaptive Computation and Machine Learning Series), MIT, 2012.

Subject Code:	ME9017	Course Title	Electric Vahiela and Mah	, ili+v
Contact Hours		Credit		iiity
Programme	B Tech/B Des	Semester	S VI	
Pre-requisites	NIL	Jennester	••	
Evaluation scheme	Quiz (02): 10%, Mid Sem (30%),	Project / Term I	Paper: 15%, Assignment: (!	5% and
Leonaine Ohiosticos A	End Sem (40%)			
Learning Objective: A	to learn impact of EVS on the	road. Does the	environmental gain from v	venicie
road? How long will it	last2 Whats the prospects of EVs	with IOT?		mule
This course will help a	acquire elements from engineerin	g science socio	logy environmental scienc	re nolitical
science, economics, m	nanagement science, in order to e	valuate, analyz	e and implement the diffu	sion of
electric vehicles wher	e their use is relevant.		P	
The course will be use	eful for post-graduate students an	d final year und	lergraduate students.	
Course Detail :				
Module1: Understand	d Mobility and its Evolution			
Mobility Challenges	s, ICE vs EV			
Mobility, Urban For	ms and Ways of Life			
Energy Storage: Inti	roduction to Energy Storage Requ	irements in Elec	ctric Vehicles, Battery base	ed energy
storage and its anal	lysis			1 • • • • •
Electric Mobility: S	pecifications and Evolutions	De ales att and		[04H]
Climate Change	bility and Environmental impact i	Reduction		
Climate Change				
Local impacts of Trans	sportation			[]
Life-Cycle Assessment (LCA) [06H]				[06H]
Module3: Electric Vehicle Battery and Energy Management				
Introduction to EV bai	tteries			
Batteries of future				
Battery management	systems			
Introduction to energ	y management strategies used in	electric vehicles	5	
Automotive networki	ng and communication			
EV charging standards, V2G, G2V, V2B, V2H. [15H]				[15H]
Module4: – Economic Analysis				
Economic Analysis To	ols and Concepts			
Electric Mobility and E	Environment: Economic Balance			
Macroeconomic Scale				
Microeconomic Scale				[06H]
Module5: Electric Mo	bility and Infrastructures: Technic	al and Economi	c Dimensions	_

[10H]

Issues and Situational Analysis	
Electric Mobility Business possibilities	
Mobility Services	
Connected Mobility	
integration of EVs in smart grid	
Simulations and case studies in above mentioned areas	[10H]

Text/Reference books:

1. Course or other web links (https://www.coursera.org/learn/electric-vehicles-mobility)

OE05 (Choose any one course from below electives)

		Ĩ			
Course Code	CS8009	Course Title	Image Processing		
Contact Hours	L-3,T-0,P-0	Credit	3		
Program	B.Tech/B.Des	Semester	VI		
Pre-requisites	None				
Evaluation Scheme	Quiz I (10%), Mid-Ter	m (20%), Quiz II (10%), End term (40%), Project (20%)		
Learning Objective : Unc	Jerstand image format	tion and the role	human visual system plays in perception		
of gray and color image of	data. Get broad exposi	ure to and unders	standing of various applications of image		
processing in industry, m	edicine, and defence.				
Course Details:					
Module 1: Digital Image	e Fundamentals: Imag	ge sensing, acquis	sition, sampling and quantization, basic		
relationships between	pixels. Image Enhanc	cement in Spatia	al Domain: Gray level transformation,		
histogram processing, sm	noothing and sharpenir	ng Spatial Filters.	[08H]		
Module 2: Image Trans	forms: Fourier transfo	orm and their pr	operties, Fast Fourier transform, Other		
transforms, image enhan	cement in frequency d	lomain.			
[08H]					
Module 3: Color Image P	rocessing, Image Resto	oration, Image Co	mpression. [08H]		
Module 4: Wavelets ar	nd Multiresolution Ar	nalysis: Introduct	ion to wavelets, scaling functions and		
subspaces, Subband coding, Subband decomposition of images, Continuous and Discrete wavelet					
transforms. Various morp	transforms. Various morphological operators and their use in different applications. [08H]				
Module 5: Image Segr	Module 5: Image Segmentation: edge detection, Hough transform, region based segmentation,				
Representation and Des	scription: Object repr	resentation, boui	ndary based descriptors, region based		
descriptors (texture and	shape features).		[08H]		
Text/Reference books:					
1. R. C. Gonzalez and R.	1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Third Edition, Pearson, 2012.				
2. M Sonka, V Hlavac, R	ivac, R Boyle, Image Processing, Analysis, and Machine Vision, Third Edition, Thomson				
Engineering, 2007.					
3. W. K. Pratt, Digital Im	nage processing, Third Edition, John Wiley & Sons Inc., 2001.				
4. Anil K. Jain, Fundame	ntals of Digital Image Processing, Pearson Education, 2006.				

Subject Code	OE3E09	Course Title	IC Fabrication
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech/B.Des	Semester	VI
Pre-Requisites			
Evaluation scheme	cheme Quiz I (15 %), Midterm (30 %), Quiz II (15 %), End term (40%) Project (%)		
Module 1			
Introduction to IC 1	Technology: Semicond	uctors and Insul	ators: Definition, crystal structures, physical
properties, Moore's	s law, Crystal Defect	s, Basic Fabric	ation Steps, Wafer Fabrication-CZ and FZ
Techniques, MBE, LPE and MOCVD Techniques for Crystal Growth [08H]			

Module 2

Thermal Oxidation of Silicon and Photolithography: Oxidation kinetics (general solution, Parabolic and linear growth and empirical modifications to the growth rate of SiO₂ and its kinetics), SiO₂/Si interface, charge traps and impurities redistribution at the interface, Photolithography steps, Photoresists, Physical properties of Resists (Sensitivity, Resolution, etc.), Exposure Energy Plots, Clean Room, RCA Cleaning Techniques, Gettering, Wafer Exposure Systems: Proximity, Projection and Contact Printing Systems [12H]

Module 3

Etching, Diffusion and Ion Implantation: Attributes of Etchants, Selectivity and Anisotropy, Wet Chemical Etching, Dry etching, Sputter Etching, Plasma Etching, Reactive Ion Etching, Etch Systems, Diffusion: Dopant Introduction and Redistribution, Diffusion Equations (Fick's laws), Constant Source, Drive-in-diffusion and Burried Gaussian Source Diffusion, Mechanisms for Diffusion, Electric Field Enhancement, Dose, Beam Current, Ion Implanter Basics, Stopping Mechanisms: Nuclear Stopping and Electronic Stopping, Channeling, Doping Profiles, Damages caused by Ion Implantation, Annealing **[15H]**

Module 4 Metallization and Process Integration

Ohmic and Schottky contacts, Metallization: PVD, CVD, Aluminium Metallization, Copper Metallization,

Silicides, Basic Fabrication Process for Passive Components, pn Junctions and CMOS	[09H]
--	-------

Text Books:

1. S.M.Sze(2nd Edition)"VLSI Technology", McGraw Hill Companies Inc.

2. C.Y. Chang and S.M.Sze (Ed), "ULSI Technology", McGraw Hill Companies Inc.

Reference books:

1. James D.Plummer, Michael D.Deal, "Silicon VLSI Technology" Pearson Education

Subject Code:	OE3E32	Course Title	Biomedical Instrumentation	
Contact Hours	L-3, T-0, L-0	Credit	3	
Programme	B.Tech/B.Des	Semester	VI	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Mid-Term (30	%), Quiz II (15%)	, End-Term (40%)	
Course Detail :				
Physiology and Transducer: Cell and its structure – Action and resting – Potential propagation of action potential – Sodium pump – Nervous system – CNS – PNS – Nerve cell – Synapse – Cardio pulmonary system – Physiology of heart and lungs – Circulation and respiration – Transducers – Different types – Piezo-electric, ultrasonic, resistive, capacitive, inductive transducers – Selection criteria. [09H] Electro – Physiological Measurements: Basic components of a biomedical system – Electrodes – Micro, needle and surface electrodes – Amplifiers – Preamplifiers, differential amplifiers, chopper amplifiers – Isolation amplifier. ECG – EEG – EMG – ERG – Lead systems and recording methods – Typical waveforms. [09H]				
[09H] Non-Electrical Parameter Measurements: Measurement of blood pressure – Cardiac output – Cardiac rate – Heart sound – Respiratory rate – Gas volume – Flow rate of Co2, o2 in exhaust air - PH of blood, ESR, GSR measurements – Plethysmography. [09H] Medical Imaging And PMS: X-ray machine - Radio graphic and fluoroscopic techniques – Computer tomography – MRI – Ultrasonography – Endoscopy – Thermography – Different types of biotelemetry systems and patient monitoring – Electrical safety. [07H]				

Assisting And Therapeutic Equipments: Pacemakers – Defibrillators – Ventilators – Nerve and muscle stimulators – Diathermy – Heart – Lung machine – Audio meters – Dializers. [07H]

Text/Reference books:

1. Leslie Cromwell, Fred J.Weibell, Erich A.Pfeiffer, 'Bio-Medical Instrumentation and Measurements', II Edition, Pearson Education, 2002 / PHI.

R.S.Khandpur, 'Handbook of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co Ltd., 2003
 M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2003.

4. L.A. Geddes and L.E.Baker, 'Principles of Applied Bio-Medical Instrumentation', John Wiley & Sons, 1975.

5. J.Webster, 'Medical Instrumentation', John Wiley & Sons, 1995.

6. C.Rajarao and S.K. Guha, 'Principles of Medical Electronics and Bio-medical Instrumentation', Universities press (India) Ltd, Orient Longman Itd, 2000.

Subject Code:	OE3D06	Course Title	Indian Philosophy and Literature	e in	
Contact Hours	L-3, T-0, L-0		English		
Programme	B.Tech/B.Des	Credit	3		
Pre-requisites	NIL	Semester	VI		
Evaluation scheme	Quiz I (10%), Mid term (309	%) <i>,</i> Quiz II (10%)	, End term (50%)		
Course Detail :					
1 Rabindranath Tagore			n	1211	
- Gitaniali (song no. 1-7. 2	13, 18,57)		[0	51	
2. Dr. S. Radhakrishnan-			[0	7H]	
- The Hindu View of Life. ((1 chapter) - An Idealist View	of Life. (selecte	ed readings- 1 chapter)	-	
3. Mahatma Gandhi-			ر [0)3H]	
- The story of my Experim	ents with truth. (selected re	adings- 2 chapte	ers)	I	
4. Swami vivekananua-	ı		ĮC.	וחכי	
5. Kabir –	1		0]	4H1	
- Some songs			•	-	
American Literature					
1. Ralph Waldo Emerson-			[0)8H]	
- The America Scholar - Se	elf Reliance		0	оці	
- Christianity and Hinduis	2. Henry David Thoreau- - Christianity and Hinduism compared - Posistance to Civil Covernment				
3. Some Poems-					
- Ralph Waldo Emerson i.	- Ralph Waldo Emerson i. Brahma ii. Hamatreya				
4. Henry David Thoreau [02					
- Walden (book –some re	adings)				
Text/Reference books:					
1. Basham, A.L. The Wonde	er that was India, New Delhi:	Rupa and Co., 2	1997	c	
2. Buell, Lawrence, The Am	ierican Transcendentalists Es	sential Writings	s, New York: Random House, 2000	b .	
3. Gopal, Sarvepalli, Radha	krishnan: A Biography, New	Delhi: Oxford U	niversity Press, 2003.		
4. Iyengar, Srinivas K.R., Ind	dian Writing in English, New	Delhi: Sterling P	Publishers, 2002.		
5. Mcdermott, Robert A., E	Basic Writings of S. Radhakris	hnan, Mumbai:	Jaico Publishing House, 2002.		
5. Mumukshananda, Swami, The Complete works of Swami Vivekananada, Calcutta: Swami Mumukshananda, 1994.					
7. Narayan, Shriman, The S	7. Narayan, Shriman, The Selected works of Mahatma Gandhi, Ahmedabad: Navjivan Trust, 1997.				
8. Radhakrishnan, S., An Idealist View of Life, New Delhi: Indus Publishers, 1994.					
9. Radhakrishnan, S., The Hindu View of Life, Mumbai: Blackie and Son Publishers, 1983.					
10. Tagore, Rabindranath,	Gitanjali, New Delhi: Macmil	lan India Limite	d, 1997.		

Subject Code:	OE3D21	Course Title:	Communication Design	
Contact Hours:	L-2, T-0, P-2	Credit:	3	
Programme :	B.Tech/B.Des	Semester :	VI	
Pre-requisites:	NIL			
Evaluation scheme	Quiz I (15%), Midterm	n (30%), Quiz II (15%), E	End term (40%)	
Course Detail-				
Communication design application in furniture design. [07H Lecture,+3H Lab]				
Communication design application in interior and space design. [07H Lecture,+3H Lal				
Communication design application in transportation design. [07H Lecture,+3H Lak			[07H Lecture,+3H Lab]	
Communication design application in display and control design. [07H Lecture,+3H La			[07H Lecture,+3H Lab]	
Text/Reference books:				
1 Williams R. & Nowton I (2000) Visual communications integrating modia art and science				

1. Williams, R., & Newton, J. (2009). Visual communication: integrating media, art, and science. Routledge.

2. Worth, S., & Gross, L. P. (1981). Studying visual communication (pp. 134-147). L. P. Gross (Ed.)

Subject Code:	OE3M10	Course Title	Finite Element Methods for		
Contact Hours	L-3, T-0, L-0		Mechanical Engineering		
Programme	B.Tech/B.Des	Credit	3		
Pre-requisites	NIL	Semester	VI		
Evaluation scheme	Quiz (10%), Project (20%) N	/lid-Sem(30%) a	nd End-sem(40%)		
Learning Objective: Basic c	ourse of finite element met	hods and under	standing the FE software (ANSYS &		
Abaqus)					
Course Detail :					
Module1:					
Objective of the Course, Ba	sic Steps in FEM Formulatio	n, Finite elemer	nt formulation starting for governing		
equation: Weighted residuation	al Method, Galerkin Method	l, Weak (Variatio	on), Ritz Method. [10H]		
Module2:					
1-D Elements, Spring and T	russ elements, Basis Functio	ns and Shape Fi	unctions. Convergence Criteria,		
assembly, imposition of bo	undary conditions.		[10H]		
Module3: Plane Strain and	Stress, Problems with CI cor	ntinuity: Beam E	Bending, Connectivity and Assembly		
of CI Continuity Elements. 2	2-D elements, Truss element	ts, Beam elemer	nts, (Triangles and Quadrilaterals)		
and Shape Functions. Numerical integration, Sub-parametric, Iso-parametric and Super-parametric					
Elements.			[10H]		
Module4: Dynamics of Fini	te element, Free Vibration P	roblems, Formu	llation and solution of Eigen Value		
Problem, explicit and implie	cit methods.		[10H]		
Text/Reference books:					
1. O C Zienkiewicz and R	L Taylor, The Finite Element	Method, 3d ed	.McGraw-Hill, 1989		
2. K J Bathe, Finite Eleme	ent Procedures in Engineerin	g Analysis, Pren	tice-Hall, Englewood Cliffs, NJ, 1982.		
3. Seshu P. Text Book of	3. Seshu P. Text Book of Finite Element Analysis, PHI, 1st Edition, 2003.				
4. Cook, Malkus and Ples	ha, Concepts and Applicatio	ns of Finite Eler	nent Analysis, John Wiley and Sons		

- 5. Daryl L Logan : A First Course In The Finite Element Method CL Engineering; 5th edition
- 6. Chandrupatla : Introduction to Finite Elements in Engineering", 3rd Edition, Prentice-Hall of India, Eastern Economy Editions.

Course Datally			
Evaluation scheme	Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)		
Pre-requisites	NIL	Semester	VI
Programme	B.Tech/B.Des	Credit	3
Contact Hours	L-3, T-0, L-0		Engineering
Subject Code:	ME8016	Course Title	Biomaterials Science and

Course Detail :

Introduction: Requirements of biomaterials, Classification of biomaterials, Mechanical properties of biomaterials, Effects of processing on properties of biomaterials [05H]

Biological Materials: Structure of proteins, collagen, elastic proteins, polysaccharides, chitin and chitosan, structure properties relationships [06H]

Metallic Implant Materials: Some common examples and properties of metals used as implants: stainless steel, titanium and titanium alloy, cobalt chrome alloys. Problem of corrosion, corrosion behavior and the importance of passive films for tissue adhesion, wear, fatigue, stress shielding, stress-corrosion cracking. Host tissue reaction with metals. [06H]

Polymeric Implant Materials: Some common examples and properties of polymers used as implants: PE,

PMMA, Silicon Rubber, Polyester, Acetals, Biodegradable Polymers. (Classification according to thermosets, thermoplastics and elastomers). Viscoelastic behavior: Tg, creep-recovery, stress relaxation, strain-rate sensitivity. Host tissue reaction: importance of molecular structure, hydrophilic and hydrophobic surface properties, migration of additives (processing aids), aging and environmental stress cracking. [06H]

Ceramics Implant Materials: Definition of bioceramics. Common types of bioceramics (inert and bioactive types) and their properties (importance of wear resistance and low fracture toughness). Host tissue reactions: importance of interfacial tissue reaction (e.g. ceramic/bone tissue reaction). **[06H]** Composite Implant Materials: Mechanics of improvement of properties by incorporating different elements. Composites theory of fiber reinforcement (short and long fibers, fibers pull out). Polymers filled with osteogenic fillers (e.g hydroxyapatite). Textile composites. Host tissue reactions. **[06H]** Testing of Biomaterials: In-vitro testing. Mechanical test: wear, fatigue, tensile, corrosion studies and fracture toughness. Effect of physiological fluid on the properties of biomaterials. In-vivo testing (animals). Ex-vivo testing. Contact allergy to biomaterials. Standards. **[05H]**

Text books:

- 1. Biomaterials Science-Ratner, Hoffman, Schoen, Lemons (Elsevier; ISBN 0-12-582461)
- 2. Biomaterials -Temenoff and Mikos (Pearson Prentice Hall; ISBN 0-13-009710-1)
- 3. Materials Science and Engineering: An Introduction -Callister (John Wiley and Sons; ISBN 0-471-13576-3)

4. Science and Engineering of Materials -Askland and Phule (Thomson; ISBN 0-534-55396-6

Reference books:

- 1. SH Teoh (Ed), Engineering Materials for Biomedical Applications, World Scientific, 2004.
- 2. JB Park and RS Lakes (Eds), Biomaterials An Introduction, Springer-Verlag, 3rd Edition, 2007.
- 3. BD Ratner, AS Hoffman, FJ Schoen, JE Lemons (Eds), Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, 2nd Edition, 2004

OE06 (Choose any one course from below electives)

Course Code	CS8011	Course Title	Machine Learning		
Contact Hours	L-3,T-0,P-0	Credit	3		
Program	B.Tech/B.Des	Semester	VI		
Pre-requisites	None				
Evaluation Scheme	Quiz I (10%), Mid-Ter	m (20%), Quiz II ((10%), End term (40%), Project (20%)		
Learning Objective : In	this course students	will learn to tra	in the machine using different machine		
algorithms to solve the re	eal-world prediction pr	roblems.			
Course Details:					
Module 1: Learning Prob	lem, Designing a Leari	ning System, Typ	es of Learning. Supervise Learning: Linear		
and Logistic regression, D	ecision Tree Learning.		[10H]		
Module 2: Instance-Base	ed Learning, kNN and	CBR, Bayesian L	earning, Naive Bayes Classifier, Artificial		
Neural Network (ANN), SVM. [10H]					
Module 3: Unsupervised Learning: Mixture Models and EM, Clustering, K-Means, DBSCAN, Hierarchical					
clustering, Association Rule Mining, Dimensionality Reduction. [10H]					
Module 4: Performance Evaluation, Confusion Metrics, Evaluating Hypotheses, Confidence Interval,					
Hypothesis Testing Ense	Hypothesis Testing Ensemble Learning Bagging and Boosting Formulating. Computational Learning				
Theory, Issues and practi	cal advice in Machine	Learning.	[10H]		
Text/ Reference books:					
5. Tom Mitchell. Machir	ne Learning, McGraw H	lill <i>,</i> 1997.			
6. Chris Bishop, Pattern	Recognition and Mach	nine Learning, Spi	ringer, 2007.		
7. Stephen Marsland, M	lachine Learning an Alរ្	gorithmic Perspe	ctive, Chapman and Hall/CRC, 2014.		
8. Mehryar Mohri, Afsh	ar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine Learning (Adaptive				
Computation and Ma	chine Learning Series)	, MIT, 2012.			

Subject Code:	OE3C34	Course Title	Cyber Physical Systems
Contact Hours	L-3, T-0, L-0	Credit	3
Programme	B.Tech/B.Des	Semester	VI
Pre-requisites	NIL		
Evaluation scheme	Quiz I (20%), Mid-Term (20	%) <i>,</i> End term (40	%), Project (20%)

Objective:

This course is designed to offer learners an introduction to cyber physical system and its applications in business world. This course provides an insight into concepts of structure, function, and challenges in cyber physical system. Related technologies and challenges are also introduced to present the overall techno-economic and social scenario before the learners.

Course Detail :

Unit 1:Introduction to CPS and CPPS

Introduction, Concept maps of cyber physical system and cyber physical production system, literature survey and trends, Need for cyber physical systems, Applications and economics of cyber physical system [10H]

Unit 2: Structure and function cyber physical production system (CPPS)

Concept of embedded computer systems, internet of things, industrial internet of things, internet of services, ubiquitous computing, sensors and actuators, RFID, IPv4 and IPv6, International standards and safety considerations

Unit 3: Introduction to Industry 4.0 (IR 4.0)

Various industrial revolutions, digitalization and networked economy, enablers and challengers to IR 4.0, smart manufacturing, smart logistics, smart cities, comparison of present factory with IR 4.0 factory, trends and predictive analysis for business transformation

Unit 4: Related technologies to IR 4.0

Robotic automation; collaborative robotics; support system for IR 4.0; mobile computing; cyber security; role of data, information, knowledge and collaboration in IR 4.0 factories, cloud computing

Unit 5: Business issues in CPS and Case studies

Opportunities and challenges, future of work and skill amongst workers, strategies for competition, strategies for collaboration, business models for CPS Study of various CPS modules in different real-life industrial situations, Design and synthesis of CPS, Troubleshooting in CPS, Application in smart grid, autonomous automobile, medical monitoring, industrial control and robotic systems

Text/Reference books:

- 1. Editor(s): Houbing Song, Danda B. Rawat, Sabina Jeschke, Christian Brecher, Cyber-Physical Systems: Foundations, Principles and Applications, Academic Press (2017)
- 2. Raj Rajkumar and Dionisio De Niz ;Cyber-Physical Systems 1st Edition, Pearson India (2017)
- 3. Y. Maleh ;Cybersecurity And Privacy In Cyber PhysicalSystems, Taylor & Francis Ltd; (2019)
- 4. Li ;Reinforcement Learning for Cyber-Physical Systems; Routledge; (2019)

Subject Code	OE3E15	Course Title:	Information Theory and Coding
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech/B.Des	Semester	VI
Pre-Requisites	NIL		
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%)		

[10H]

[06H]

[08H]

[06H]

Course Detail:					
Module 1					
Review of probability theory, Entropy: marginal entropy, joint entropy, conditional entropy and the chair					
rule for entropy. Mutual information between ensembles of random variables.					
Module 2					
Source Coding theorems: prefix, variable and fixed length codes. Channel models and channel capac	city.				
Channel Coding theorem.	[09H]				
Module 3					
Linear Block Codes: Generator and parity check matrices, Minimum Distance, Syndrome decoding,					
Bounds on minimum distance.	[09H]				
Module 4					
Cyclic Code: Finite Fields, binary BCH codes, RS Codes. Convolutional Codes: Encoders, Trellis, Viterb	pi 🛛				
decoding.	[18H]				
Text Books:					
1. Thomas M. Grover and Joy A. Thomas, "Elements of Information Theory," Wiley.					
2. John G. Proakis and Masoud Salehi, "Digital Communications," 5th edition, McGraw Hill.					
Reference books:					
1. Csisz´ar & K¨orner, "Information Theory: Coding Theorems for Discrete Memoryless Systems",					
Cambridge university press, 2011.					

Contact Hours L-3, T-0, L-0 Credit 3
Programme B.Tech/B.Des Semester VI
Pre-requisites NIL
Evaluation scheme Midterm (35%), End term (45%), Project (20%)
Learning Objective: This course will provide learners with an understanding of speech processing
Course Detail :
Module I:
Applications, pattern recognition, feature extraction, modeling, testing; Speech recognition: Objective, issues, block diagram description, classification, development of speech recognition system using vector quantization (VQ), dynamic time warping (DTW), Hidden Markov Model (HMM) and Neural networks (NN); [10]
Module II:
Speech synthesis: Objective, issues, block diagram description, classification, development of speech synthesis system using articulatory, parametric, concatenative and HMM based approaches. [10]
Module III:
Speaker recognition: Objective, issues, block diagram description, classification, development of speaker recognition system using VQ, DTW, GMM NN and HMM;" [10]
Module IV:
Speech enhancement: Objective, issues, block diagram description, classification, enhancement of noisy speech, reverberant speech enhancement and multi -speaker speech processing."
Text/Reference books:
1 . L. R. Rabiner, B. H. Jhuang and B. Yegnanarayana."Fundamental s of speech recognition", Pearson Education, 2009.
"2. J . R. Deller, Jr., J. H. L. Hansen and J. G. Proakis Discrete-Time Processing of Speech Signals, Wiley- IEI Press, NY, USA, 1999."
"Reference books:
1. D. O'Shaughnessy, Speech Communications: Human and Machine, Second Edition, University Pres 2005. "2. J. Benesty, M. M. Sondhi and Y. Huang, "Hand book of speech processing.", Springer, 2008."

Subject Code:	OE3D37	Course Title	Application for Renewable Energy
Contact Hours	L-2, T-0, L-2		Resources in Design
Programme	B.Tech/B.Des	Credit	3
Pre-requisites	NIL	Semester	VI
Evaluation scheme	Assignment I (15%), Midterm (30%), Assignment II (15%), End term (40%)		

Learning Objective: The course will help to develop basic knowledge about Renewable Energy Resources and its application in Design. It Will also help to develop the idea about methods and tools required for the sustainable design.

Course Detail :

Module 1 : Introduction to Energy sources, Prospects of renewable energy sources, Environmentalimpact of renewable energy towards sustainability. Solar Energy: Solar radiation, Different types of SolarCollectors, Principle of energy conversion in solar cells, Different types of PV Cell, Design of PV array,Application of Solar Energy.[7H Lecture+3H Lab]

Module 2 : Wind Energy: Principle of Wind energy conversion; Basic components, various types of windmills and their constructional features; design considerations, site selection considerations and applications. Bio Energy : Resources and conversion process, Biogas generation plants classification and applications. [7H Lecture+3H Lab]

Module 3 :Geo thermal Energy: nature of geothermal energy, geothermal sources, application and
future prospects. Ocean Energy: Ocean Thermal Electric Conversion (OTEC) systems, Energy from tides,
basic principle of tidal power and application, power from wave, wave energy conversion
devices, application and future prospect.**[7H Lecture+3H Lab]**

Module 4 : Hydrogen Energy: Hydrogen production methods, Hydrogen storage, hydrogen transportation, utilization of hydrogen energy. Fuel Cells: Design principle and operation of fuel cell, Types of fuel cells, application of fuel cells. Magneto hydrodynamics (MHD) energy conversion: Principle of MHD power generation, Design problems and developments, application and future prospect.

[7H Lecture+3H Lab]

[10H]

[10H]

[10H]

Text/Reference books:

- 1. Rai, G.D. (1988). Non conventional Energy Sources. Khanna Publishers.
- 2. Bansal, N. K., Kleemann, Manfred, Meliss, Michael (1990). Renewable energy sources and conversion technology. Tata Mc Graw Hill.
- 3. Desai Ashok V. 1990 Non conventional Energy. New Age International Publishers Ltd.

Subject Code:	OE3D39	Course Title	The scope in Traditional Media Arts
Contact Hours	L-2, T-0, P-2	Credit	3
Programme	B.Tech/ B.Des	Semester	VI
Pre-requisites	NIL		
Evaluation scheme	Assignment I (15%), Midterm (30%), Assignment II (15%), End term (40%)		

To prepare students to perceive, experience, visualize, create and exhibit their works and to use these skills in the main core esteem.

This course will be helpful in developing:

- drawing, painting and installation skills.
- conceiving and conceptualizing ideas into actual work of art/design.
- through their artwork sensitivity towards social and regional issues.
- presentation skills, the ability to work in groups and handle responsibilities.

Detailed Course Content:

- Module 1: Understanding art Indian and western art
- Module 2: Techniques applied in still life: sketching, water and oil colours

Module 3: Evaluation and skills in Landscape drawing and painting: outdoor practice rapid sketching and painting. [10H]

Module 4: Printmaking using different surfaces

Text/Reference books:

1. Drawing Still Life, Publisher: Unicorn Books (I January 2009) by PROSENJIT SAHA (Author ARUNDHATI SAHA (Author)

2. A History of Fine Arts in India and West, Publisher: Orient BlackSwan (1989) by E. Tomory (Author)

3. A World History of Art, Publisher: Laurence King Publishing; 7th Revised edition edition (10 August 2009) by High Honour (Author), John Fleming (Author)

Subject Code: **OE3M18 Course Title** Maintenance and Reliability **Contact Hours** L-3, T-0, L-0 Credit 3 VI Programme B.Tech/B.Des Semester **Pre-requisites** NIL Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%) **Evaluation scheme** Learning Objective: This course will introduce the basic maintenance and reliability concepts and tools. It will give an understanding about how to apply these concepts and tools at different phases of systems' life cycle and can have a significant impact on company profitability. **Course Detail : Module1:** Maintenance Concepts and Strategies: Introduction, maintenance functions and objectives, maintenance planning and scheduling, maintenance organization. General Introduction to Maintenance Types: Breakdown, emergency, corrective, predictive, and preventive; maintenance prevention; design-out maintenance, productive maintenance, shutdown maintenance and scheduled maintenance. [08H] Module2: Condition Based Maintenance: Principles of CBM, pillars of condition monitoring, CBM implementation and benefits; condition monitoring techniques- visual monitoring, vibration monitoring, wear debris monitoring, corrosion monitoring, performance monitoring [08H] Module3: Basic Concepts of Reliability: Probability distributions used in maintenance engineering-Binomial, Poisson, Exponential, Normal, Log-normal, Gamma and Weibull distribution; failure rate, hazard rate, failure modes, MTTR, MTBF, MTTF [10H] Module4: System Reliability Models: System reliability–n-component series systems, m-component parallel systems and combined system; standby systems; K-out-of-m systems; redundancy techniques in system design; event space, decomposition (Key Stone), cut and tie sets, Markov analysis, reliability and quality, unreliability, maintainability, availability [10H] Module 5: Repair methods for basic machine elements: beds, sideways, spindle gear, lead screws, Failure analysis, Logical and sequential fault location methods, Repair methods for material handling equipment: handling equipment, job order systems, use of computers in maintenance. [06H] **Text/Reference books:** 1. Ebeling C.E., An Introduction to Reliability & Maintainability Engg., TMH 2. Higgins L.R., "Maintenance Engineering Hand book", McGraw Hill, 5th Edition, 1988. 3. Srinath L.S., Reliability Engineering; East West Press.

Subjec	t Code:	OE3M19	Course Title	IC Engine	
Conta	ct Hours	L- 3, T- 0, P- 0	Credit	3	
Progra	imme	B.Tech/B.Des	Semester	VI	
Pre-re	quisites	NIL			
Evalua	tion scheme	Quiz (15%), Mid-sem (35%) and	End-sem (50%)		
Α.	INTRODUCTION	N:			[05H]
1.	Basic definition	s:			
2.	Brief history of	the engine:			
3.	Definitions of v	arious terms used in engines			
4.	Classification of	f engines - different types of engi	nes:		
В.	THERMODYNA	MICS OF CYCLES:			[04H]
1.	Air Standard Cy	rcles			
2.	Variable Specifi	c Heat Calculations			
3.	The Air Standar	d Engine			
4.	Fuel Air cycles				
5.	Real Cycles:				
6.	Computer Simu	lation			
С.	FUELS:				[03H]
1.	Properties of fu	els and their measurement			
2.	Requirements o	of fuels for the petrol engine			
3.	Requirements o	of fuels for the diesel engine			
4.	Conventional fu	lels for the petrol and diesel engi	nes		
5.	Alternative fuel	s for the petrol and diesel engine	es necessity for alter	native fuels,	
	requirements f	or alternative fuels.			
D.	INTAKE SYSTEN	Л:			[02H]
1.	Intake and exha	aust processes in a four-stroke cy	cle engine:		
2.	Volumetric effic	ciency			
Ε.	FUEL METERIN	G IN A SPARK IGNITION ENGINE:			[02H]
1.	Mixture require	ements in an si engine			
2.	Principle of carl	ouretion			
3.	Fuel injection in	a spark ignition (petrol) engine,	mpti		
F .	COMBUSTION	IN THE SPARK. IGNITION ENGINE	:		[02H]
1.	Basic combust	ion process			
2.	Analysis of cyll	nder pressure data			
3.	Ignition				
4.	Abnormal com	bustion			
5.	In cylinder mot				[0.41]
G.	COMBUSTION	IN THE COMPRESSION IGNITION	ENGINE:		[04H]
1. 2	Basic compustion	on process			
2. 2	Analysis of Cyll	nder pressure data			
⊿	Fuel injection	a n			
4. F		UII			
5.				t/stop FCU	[0211]
н.	IVIISC: Hybrid po	Wertrain architecture, Features I	ike engine auto star	t/stop, ECU:	
I. 1	ENGINE EIVIISSI	UNS - FORMATION AND CONTRO	UL:		[04H]
1. 2	Mochanism of r	nollutant formation in onginos			
2.	Emission contro	ol stratogios			
З. Д	Instruments for	measuring exhaust emissions			
	Emission system	n: muffuler and catelytic convert	٥r		
5. 6.	Introduction to	Bharat stage emission standards	. co emission and ca	arbon credit	
			,		

	J. ENGINE TESTING AND PERFORMANCE CHARACTERISTICS:	[05H]
	1. Measurement techniques.	
	2. Performance factors and ratings.	
	3. Types of performance tests.	
	4. Performance characteristics of si engines	
	5. Performance characteristics of ci engines.	
	6. Heat balance.	
	K. COOLING SYSTEMS:	[03H]
	Need Variation of gas temperature. Piston temperature distribution. Theory of engi	ne heat
	transfer and correlation. Parameters affecting engine heat transfer. Air-cooled system	s. Types
	of water- cooling systems. Radiators, Fans, Correlation for the power required for	engine
	cooling.	
	L. LUBRICATION SYSTEMS:	[03H]
	Causes of engine friction. Function of lubrication. Mechanism of lubrication. Journal	bearing
	lubrication. Types of lubrication systems. Lubrication of engine components.	
	M. SUPERCHARGING AND TURBOCHARGING:	[03H]
	N Supercharger Supercharging methods for SL engines Turbocharging	
	The supercharger, supercharging methods for si engines, randound ang	in Ci
	engines, Supercharged Engine performance evaluation.	in Ci
Т	engines, Supercharged Engine performance evaluation.	in Ci
T 1.	engines, Supercharged Engine performance evaluation. •ext/Reference books: Ganesan, V. Internal Combustion Engines, Second Edition, Tata McGraw Hill Publishing	
T 1.	engines, Supercharged Engine performance evaluation. Text/Reference books: Ganesan, V. Internal Combustion Engines, Second Edition, Tata McGraw Hill Publishing Company Limited, New Delhi.	
T 1. 2.	 engines, Supercharged Engine performance evaluation. ext/Reference books: Ganesan, V. Internal Combustion Engines, Second Edition, Tata McGraw Hill Publishing Company Limited, New Delhi. Mathur, R.P. And Sharma, M.L. A Course In Internal Combustion engines, 8thedition, 	

3. Fundamentals Of I.C. Engines - P.W. Gill, J.H. Smith And EJ. Ziurys.
B.Tech/B.Des Semester-VII

OE07 (Choose any one course from below electives)

Subject Code:	FC8001	Courso Titlo	Advance Engineering		
Subject Code.	20001	course ritie			
Contact Hours	L-3, T-0, P-0		Electromagnetics		
Programme	B.Tech	Credit	3		
Pre-requisites	Fundamental of electromagntics	Semester	VII		
	and Engineering mathematics.				
Evaluation scheme					
Time harmonic electro	omagnetic fields, Wave propagation	in dielectric and l	ossy media, Reflection and		
transmission of waves	s, Duality principle, Image theory, Eq	uivalence principl	e, Reciprocity theorem, Green's		
function, Radiation from source. [12L]					
Plane waves, Wave functions, Propagation in waveguides, Rectangular Cavity, Partially filled waveguides,					
Hybrid modes, Modal expansion of fields, Dielectric slab waveguides, Radiation from apertures in ground					
planes.			[10L]		
Cylindrical waves, Bessel and Henkel functions, Cylindrical waveguides and cavity, Radial waveguides,					
Sources of Cylindrical waves, Wave transformation, Scattering by cylinders, Radiation from apertures. [10L]					
Spherical waves, Spherical Bessel and Henkel functions, Legendre polynomial, Spherical cavity, Space as a					
waveguide, Spherical Radial waveguides, Sources of spherical waves, Spherical wave transformation,					
Scattering by spheres			[10L]		
Text/Reference books	5:				
1. Time Harmonic Elec	tromagnetic Fields by Roger F Harri	ngton, IEEE Press			

2. Advanced Engineering Electromagnetics by Constantine A. Balanis, Wiley, February 2012.

Subject Code:	ME5022	Course Title	Industrial Instrumentation
Contact Hours	L-3, T-0, P-0		& Metrology
Programme	B.Tech	Credit	3
Pre-requisites	NIL	Semester	VII
Evelvetien eekense	$O_{\rm rel} = (150\%)$ Mid care (250\%) and End care (500\%)		

Evaluation schemeQuiz (15%), Mid-sem (35%) and End-sem (50%)Industrial Instrumentation: Theory and Experimentation in Engineering problem solving approaches, types
of engineering experiments, computer simulation and physical experimentation: Generalized measuring
system, types of inputs analog and digital signals, standards, calibration and uncertainly.[08H]Measurement system; performance characteristic, static performance characteristics-static calibration
linearity static sensitivity, repeatability, hysteresis threshold-resolution, readability and span: Analysis of
experimental data; Causes and types of experimental error, un-certainly analysis statistical analysis of data ,
probability distributions and curve fitting: Dynamic performance characteristics: Input types Instrument
types zero order instrument, first order instrument second order instrument.[09H]Experiment plans, Model building, Measurement Methods and Application Measurement of force and

torque; Measurement of strain and stress; Measurements ofpressure; Flow measurement and flow visualization, measurement of temperature, optical methods of measurements; [09H]

Data Acquisition and Processing : Types and configurations of DAS, Signal conditioning, A/D, D/Aconversion: Design, Planning, Execution and Analysis of experimental projects.[06H]

Metrology: Measurement of length, measurement of angle, measurement of geometric forms, straightness, flatness, roundness etc. Mechanical and optical methods. Measurement of screw threads and gears. Measurement of surface roughness and texture, introduction to CMM in-process gages, Inspection and quality monitoring. [10H]

Text/Reference books:

- 1. Mechanical Measurements by S.P. Venketeshan, IIT Madras Anne Book Pvt. Ltd. 4821 Parwana Bhawan, 1st floor 24 Ansari Road, Darya ganj, New Delhi-110 002.
- 2. Engineering Metrology by R. K. Jain, Khanna Publishers, and New Delhi 1997.
- 3. E.O. Deobelin, Measurement systems, Applications and Design 4th Edition Tata McGraw Hill 1990.
- 4. T.G. Beckwith, R.D. Marangoni and J.H. Tenhard Mechanical Measurements 5th ed. Addison Wesley 1993.
- 5. Holman, Experimental Methods for Engineers McGraw Hill 1994.

Subject Code:	OE4M40	Course Title	Computer Integrated		
Contact Hours	L- 3 T- 0 P- 0		Manufacturing		
Programme	B.Tech	Credit	3		
Pre-requisites	NIL	Semester	VII		
Evaluation scheme	Quiz (15%), Mid-sem (35%)	and End-sem (50%)			
Course Detail:					
Introduction: Production	Systems; Automation in Pro	oduction Systems; Manual L	abor in Production		
Systems; Automation Pri	inciples and Strategies		[03H]		
Manufacturing Operations: Manufacturing Industries and Products; Manufacturing Operations; Production					
Facilities; Product/Production Relationships; Lean Production[03H]					
Manufacturing Models and Metrics: Mathematical Models of Production Performance; Manufacturing					
Costs			[03H]		
Material Transport Systems: Introduction to Material Handling Equipment; Material Transport Equipment;					
Analysis of Material Transport Systems [03H]					
Storage Systems: Storage System Performance and Location Strategies; Conventional Storage Methods					
and Equipment; Automated Storage Systems; Engineering Analysis of Storage Systems. [03H]					
Introduction to Manufacturing Systems: Components of a Manufacturing System; Classification of					
Manufacturing Systems;	Manufacturing Systems: Overview of the Classification Scheme [03H]				

Single-Station Manufacturing Cells: Single Station Manned Workstations; Single Station Automated Cells;

Applications of Single Station Cells; Analysis of Single Station Cells	[03H]
Manual Assembly Lines: Fundamentals of Manual Assembly Lines; Analysis of Single Model Assembly	
Lines; Line Balancing Algorithms; Mixed Model Assembly Lines;	[03H]
Workstation Considerations; Other Considerations in Assembly Line Design; Alternative Assembly Sys	tems
	[03H]
Automated Production Lines: Fundamentals of Automated Production Lines; Applications of Automat	ted
Production Lines; Analysis of Transfer Lines.	[02H]
Automated Assembly Systems: Fundamentals of Automated Assembly Systems; Quantitative Analysis	of
Assembly Systems.	[02H]
Cellular Manufacturing: Part Families; Parts Classification and Coding; Production Flow Analysis; Cellu	ular
Manufacturing; Applications of Group Technology; Quantitative Analysis in Cellular Manufacturing.	[03H]
Flexible Manufacturing Systems: What is a Flexible Manufacturing Systems; FMS Components; FMS	
Applications and Benefits; FMS Planning and Implementation Issues; Quantitative Analysis of Flexible	
Manufacturing Systems.	[03H]
Quality Programs for Manufacturing: Quality in Design and Manufacturing; Traditional and Modern Q	uality
Control; Process Variability and Process Capability; Statistical Process Control; Six Sigma; The Six Sigma	a
DMAIC Procedure; Taguchi Methods in Quality Engineering; ISO 9000.	[03H]
Inspection Principles and Practices: Inspection Fundamentals; Sampling vs. 100% Inspection; Automa	ted
Inspection; When and Where to Inspect; Quantitative Analysis of Inspection	[02H]
Text/Reference books:	
1. Computer Integrated Manufacturing by by James A. Rehg (Author), Henry W. Kraebber(Author)	

OE08 (Choose any one course from below electives)

Subject Code	OF4M23	Course Title	Business Analytics Using R
Contact Hours	1-2 T-0 P-2	Cradit	2
		creat	5
Programme	B.Tech	Semester	VII
Pre-requisites	NIL		
Evaluation scheme			

Learning Objective: The course is designed to provide in-depth knowledge of handling data and Business Analytics' tools that can be used for fact-based decision-making using real case studies.

Primary objectives of the course are:

1. Understand the emergence of business analytics as a competitive strategy.

2. Learn to analyze data using statistical learning and machine learning algorithms to enable data driven decision making.

3. Learn data visualization and storytelling through data.

4. Learn descriptive, predictive and prescriptive analytics techniques and tools.

5. Learn to analyze data using supervised and unsupervised machine learning algorithms.

6. Analyse problems from different sectors like manufacturing, service, banking and finance, sports, pharmaceutical, and aerospace etc.

7. Hands on experience with software/packages such as Microsoft Excel, R, Python.

Course Detail:

Module 1: Predictive Analytics using Supervised Learning Algorithms - Simple linear regression: coefficient of determination, significance tests, residual analysis, confidence and prediction intervals; Multiple linear regression: coefficient of multiple coefficient of determination, interpretation of regression coefficients, categorical variables, heteroscedasticity, multicollinearity, outliers, auto-regression and transformation of variables. Logistic and Multinomial Regression. **[07H]**

Module 2: Classification and Regression Trees (CART): Forecasting: Moving average, exponential smoothing, Trend, cyclical and seasonality components, ARIMA (autoregressive integrated moving average); Application of predictive analytics in retail, direct marketing, health care, financial services, insurance, supply chain etc. **[07H]**

Module 3: Ensemble Methods: Introduction to ensemble methods, random forest and boosting algorithms; Reinforcement Learning Algorithms: Markov chain and Markov Decision Process. [07H] Module 4: Prescriptive Analytics: Introduction to Operations Research (OR), linear programming (LP), formulating decision problems using linear programming. Applications of linear programming in product mix, blending, cutting stock, transportation, transshipment, assignment, scheduling, planning and revenue management problems; Integer Programming (IP) problems, mixed-integer and zero-one programming. Applications of IP in capital budgeting and set covering. [07H]

Following case studies will be discussed:

1. Predicting Bank-Loan Defaults with Logistic Regression Model

- 2. Sales Forecasting for Gen Retailers with **Seasonal ARIMA (SARIMA) Model**
- 3. Predicting Customer Churn with **Decision Tree Model**
- 4. Predicting Probability of Malignant and Benign Breast Cancer with Random Forest Model
- 5. Predicting Flight Delays with **Multiple Linear Regression Model**
- 6. Customer Segmentation with RFM Model and K-means Clustering

Text/Reference books:

1. Business Analytics: The Science of Data-Driven Decision Making by U Dinesh Kumar, Wiley Publication, ISBN: 9788126568772

Course Code	OE4C24	Course Title	Artificial Intelligence
Contact Hours	L-2,T-0,P-2	Credit	3
Program	B.Tech	Semester	VII
Pre-requisites	None		
Evaluation Scheme	Quiz I (10%), Mid-Term (20%), Quiz II (10%), End term (40%), Project (20%)		

Learning Objective : The students will understand the principles and development of artificial intelligence. They will also learn its many applications in different areas.

Course Details:

Module 1: Overview: foundations, scope, problems, and approaches of AI, Intelligent agents: reactive, deliberative, goal-driven, utility-driven, and learning agents, Artificial Intelligence programming techniques. Problem-solving through Search: forward and backward, state-space, blind, heuristic, problem-reduction, A, A*, AO*, minimax, constraint propagation, neural, stochastic, and evolutionary search algorithms, sample applications. **[10H]**

Module 2: Knowledge Representation and Reasoning: ontologies, foundations of knowledge representation and reasoning, representing and reasoning about objects, relations, events, actions, time, and space; predicate logic, situation calculus, description logics, reasoning with defaults, reasoning about knowledge, sample applications. Planning: planning as search, partial order planning, construction and use of planning graph. [10H]

Module 3: Representing and Reasoning with Uncertain Knowledge: probability, connection to logic, independence, Bayes rule, bayesian networks, probabilistic inference, sample applications, Decision-Making: basics of utility theory, decision theory, sequential decision problems, elementary game theory, sample applications. [10H]

Module 4: Machine Learning and Knowledge Acquisition: learning from memorization, examples, explanation, and exploration, learning nearest neighbour, naive Bayes, and decision tree classifiers, Q-learning for learning action policies, applications, Sample Applications of AI. [10H]

- 1. N. J. Nilsson, Artificial Intelligence-A Modern Synthesis. Palo Alto: Morgan Kaufmann, 1998.
- 2. N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1981.
- 3. E. Rich, K. Knight, Artificial Intelligence, New York: McGraw Hill, 1991.
- 4. S.S.V Chandra, S. A. Hareendran, Artificial Intelligence and Machine Learning, PHI, 2014.

Subject Code:	OE4E25	Course Title	Advance Design	Antenna	Theory
Contact Hours	L-3, T-0, P-0	Credit	3		
Programme	B.Tech	Semester	VII		
Pre-requisites	NIL				
Evaluation scheme	Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)				

Theory of electromagnetic radiation: Coordinate system and transformation of field quantities in different coordinate system; Basic concept and definition: Directive gain, side lobe, back lobe, polarization, co-polarization and cross polarization level, beam width, input impedance, bandwidth, efficiency. [08H]

Various kind of antenna with applications: Formulation of radiation integrals and its application to analysis of wire, loop and helix type antenna; Theory of aperture antenna, including the Fourier transform method and application to slot, waveguide and horn antenna; Design consideration of parabolic reflector antenna. **[08H]**

Microstrip and Planar antennas: Rectangular and circular patch; Feed to microstrip antenna: probe feed, microstrip line feed, aperture feed, electromagnetically fed microstrip patch; Circularly polarized microstrip antenna. Dielectric Resonator Antennas: Degrees of Freedom, Rectangular, Cylindrical and hemispherical DRAs, empirical formulas for calculation of resonant frequencies [10H]

Theory of linear and phased array: Two element and multi element array, isotropic and nonisotropic array, Binomial and Chebyshev distribution; Planar array, phased array and adaptive antenna; Feed network of microstrip antenna array; Antenna for mobile communication: handset antenna and base station antenna. [10H]

Modern topics on modern antenna: Planar Inverted F Antenna (PIFA), Circularly polarized Antennas and size miniaturization techniques. [05H]

Text/Reference books:

1. Antenna Theory, Analysis and Design, by C.A. Balanis, Wiley

- 2. Antenna and Wave propagation, J D Kraus, TMH.
- 3. Antenna and Wave propagation, A. R. Harish and M. Sachidananda, Oxford University Press, 2007
- 4. Research papers from IEEE Antenna and Propagation Society.

Subject Code:	OE4E26	Course Title	Physics of Semiconductor
			Devices
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	VII
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)		

Introduction to Quantum Mechanics Principle of Quantum Mechanics, Schrodinger's wave equation, Application of Schrodinger's wave equation, extension of wave theory to atoms. Introduction to the Quantum Theory of Solids. [05H]

Electrical conductions in solids, Drift current, Density of states function, Statistical mechanics. The Semiconductor in Equilibrium, Charge carriers in semiconductor, Dopant atoms and energy levels, Extrinsic semiconductor, Statistics of donors and acceptors, charge neutrality, position of Fermi level.

[05H] Carrier Transport Phenomena, Carrier drift, carrier diffusion, Hall effect, graded impurity distribution. Non equilibrium excess carriers, Carrier generation and recombination, Characteristics of excess carriers, Ambipolar transport, Quasi-Fermi energy level. [10H]

The p-n Junction: Basic structures of the PN junction, Zero bias condition, forward bias, reverse bias condition. The p-n Junction Diode current components I/V Characteristics, small signal model of p-n junction, generation- recombination current, junction breakdown, charge storage and diode transient

[10H]

The metal-semiconductor and semiconductor hetero-junctions, Schottky Barrier diode, Ohmic and rectifying contacts, Hetreo junction materials, energy band diagram, two dimension electron gas, equilibrium electrostatics and I/V characteristics. Junction field effect transistor, basic concept, device

characteristics MESFET, Non ideal effects, high electron mobility transistor quantum well structures. [06H] Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor: Two terminal MOS structure, basic MOSFET operation, non ideal effects, MOSFET scaling, threshold voltage modification, radiation and hot electron effects. [06H]

Text/Reference books:

- S.M. Sze Physics of Semiconductor Devices Wiley-Interscience
- 2. 'Semiconductor physics and devices' 5th edition Neaman Donald A. Mc Graw Hill
- 3. Physics of Semiconductor Devices Michael Shur, (Prentice Hall, 1990)
- Physics of Semiconductor Devices, Massimo Rudan Springer Publication 4.

Subject Code	OE4M27	Course Title	Computer Aided Manufacturing
Contact Hours	L-3, T-0, P-0		System
Programme:	B.Tech	Credit	3
Pre-requisites:	NIL	Semester	VII
Evaluation schomo	Quiz: Mid.com: Projec	t: End com	

Evaluation scheme Quiz: Mid-sem: Project: End-sem

Objective: To analyze different aspects of CAM, CNC programs, basics robotics, material handling system, production management system and thus, create interdisciplinary thoughts

Unit 1:

Computer aided manufacturing

CAM concepts, objective sense scope, nature and type of manufacturing system, evolution, benefits of CAM, role of management in CAM, concepts of computer integrated manufacturing , impact of CIM on personal, role of manufacturing engineers, CIM basic functions

Unit 2:

NC/CNC machine tools [08H] NC and CNC technology: types, classification, specification and components, construction details, controllers, sensors and actuators, CNC hardware: circulating ballscrew, fiction slides, step/servomotors. Axis designation, NC/CNC Tooling, fundamental programming, types of format, part programming, programming for drilling, lathe and milling, canned cycles, parametric subroutines Unit 3:

Programmable logic controllers

Relay device components, programmable controller architecture, programming a programmable controllers, tools for PLC logic design

Unit 4:

Flexible manufacturing system and automated guided vehicle system

Types of flexibility, FMS components, FMS application and benefits, FMS planning and control, quantitative analysis, simple problems. Automated guided vehicle system- Application, vehicle guidance technology, vehicle management and safety

Unit 5:

Industrial robotics

Robot anatomy and related attributes:classification of robots, robot control systems, end effectors, sensors, accuracy and repeatability, Industrial robot application, robot part programming, simple problems

Text or References:

[06H]

[08H]

[06H]

[08H]

Subject Code:	OE4M28	Course Title	Finite Element Methods
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	VII
Pre-requisites	NIL		
Evaluation scheme	Ouiz (10%) Project (20%) Mid-Sem(30%) and End-sem(40%)		

Learning Objective: Basic course of finite element methods and understanding the FE software (ANSYS & Abaqus)

Module 1:

Objective of the Course, Basic Steps in FEM Formulation, Finite element formulation starting for governing equation: Weighted residual Method, Galerkin Method, Weak (Variation), Ritz Method. [10H] Module 2:

1-D Elements, Spring and Truss elements, Basis Functions and Shape Functions. Convergence Criteria, assembly, imposition of boundary conditions. [10H]

Module 3: Plane Strain and Stress, Problems with CI continuity: Beam Bending, Connectivity and Assembly of CI Continuity Elements. 2-D elements, Truss elements, Beam elements, (Triangles and Quadrilaterals) and Shape Functions. Numerical integration, Sub-parametric, Iso-parametric and Super-parametric Elements. [10H]

 Module 4: Dynamics of Finite element, Free Vibration Problems, Formulation and solution of Eigen Value

 Problem, explicit and implicit methods.
 [10H]

- 1. O C Zienkiewicz and R L Taylor, The Finite Element Method, 3d ed.McGraw-Hill, 1989
- K J Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1982.
 Seshu P. Text Book of Finite Element Analysis, PHI, 1st Edition, 2003.
- 4. Cook, Malkus and Plesha, Concepts and Applications of Finite Element Analysis, John Wiley and Sons
- 5. Daryl L Logan : A First Course In The Finite Element Method CL Engineering; 5th edition
- 6. Chandrupatla : Introduction to Finite Elements in Engineering", 3rd Edition, Prentice-Hall of India, Eastern Economy Editions.

	054004				
Subject Code:	OE4C31	Course Title	Network Security & Cryptograp	hy	
Contact Hours	L-3, T-0, P-0	Credit	3		
Programme	B.Tech	Semester	VII		
Pre-requisites	NIL				
Evaluation scheme	Project/Quiz I (30%), M	id term (30%), End	term (40%)		
Course Introduction an	d terminology, Conven	tional Cryptograph	y: Definitions, Classical encryp	otion	
techniques, Finite fields,	Perfect Secrecy DES, AES	S and other symme	etric cryptography. [1	L2H]	
Asymmetric Cryptograp	hy: Number Theory, pub	olic key cryptograpi	hy: RSA, ElGamal, and Elliptic C	urve	
Cryptography, Key mana	Cryptography, Key management. [10H]				
Authentication: Message authentications and hash functions, hash algorithms, Digital Signatures and				and	
Authentication Protocols	5.		[1	10H]	
Network and System Security: a. Vulnerability, Monitoring/Sniffing, Spoofing					
b. Firewalls, Intrusion Detection, c. PGP, Kerberos, d. IPSec, SSL [10H]					
Text/Reference books:					
1. W Stallings, "Cryptography and Network Security: Principles and Practice, 5/e", Prentice Hall.					
2. C Kaufman, R Perlman, M Speciner, Network Security, 2/e", Pearson Education, 2006.					
3. B A Forouzan, "Cryptograpgy and Network Security", Tata McGraw Hill, 2007.					
4. Aviel D Rubin, "White Hat Security Arsenal: Tackling the Threats", Addison-Wesley, 2001.					
5. P. Garrett. "Making and Breaking Codes- An Introduction to Cryptology", Prentice-Hall, 2001.					
6. Nigel Smart, "Cryptography: An Introduction", McGraw-Hill, 2002.					
7. Schneier. "Applied Cryptography". Second Edition. John Wiley & Sons, Inc., 1996.					
8. A. Menezes, P. van	Oorschot, S. Vanstone.	"Handbook of Ap	plied Cryptography", CRC press	5,	
1997					
15571					

Subject Code:	OE4E34	Course Title	Internet of Things
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	VII
Pre-requisites	NIL		
Evaluation scheme	Evaluation I (25%), Evaluation II (25%), Evaluation III (25%), Evaluation IV (25%)		

1. IoT definitions: overview, applications, potential & challenges, and architecture

 Internet in general and Internet of Things, Internet of Everything, Web of Things, and Making Things Smart.

[05H]

- 3. IoT communication protocols, packets, services, performance parameters of a packet network as well as applications such as web, Peer-to-peer, sensor networks, and multimedia. **[06H]**
- Business Issues, Aspects and Models of the Internet of Things. Making and Getting Things onto the Internet. [02H]
- Local Area Networks, MAC level, link protocols such as: point-to-point protocols. IoT enabled networks: Ethernet, WiFi 802.11, Bluetooth, ZWave, RFID, ZigBee. Wireless Sensor Networks: Concept, Challenges and Implementation criteria, MWSN.
- 6. Introduction to Raspberry Pi and its integration with Sensors and Actuators. Software Defined Networks in IoT (static and mobile), Cyber Physical system. [06H]
- 7. Cloud Computing: Basics, business issues, Sensor cloud. Case studies: Smart Home, Smart Cities,

Text/Reference books:

- 1. Kurose, James F.; Ross, Keith W. **Computer networking: a top-down approach,** 5th ed., international ed.: Boston, Mass.: Pearson, cop. 2010
- 2. R Buyya, AV Dastjerdi. Internet of Things: Principles and paradigms, Elsevier Inc., 2016

Subject Code	OE4M35	Course Title	Advanced Manufacturing Processes	
Contact Hours	L-3,T-0 ,P-0		and Technologies	
Programme	B.Tech	Credit	3	
Pre-requisites:	None	Semester		
Evaluation scheme	Quiz I (15%), Mid-Term (30%),	Quiz II (15%), I	End-Term (40%)	
Course Detail:				
Unconventional Ma	chining Processes: Electron Be	am Machining	(EBM), Plasma Arc Machining (PAM)	
Laser Beam Machin	ing (LBM), Abrasive Jet Mach	nining (AJM), '	Water Jet Cutting (WJM), Ultrasonic	
Machining (USM), E	ectro-Chemical Machining (ECI	M), Electric Dis	scharge Machining (EDM), Wire EDM.	
			[20H]	
Assembly: Jigs and	fixtures, principles of location	and clamping,	synthesis of simple jigs and fixtures.	
Principles of assemb	oly, engineering theory of dim	ensional chain	s, fully interchangeable and selective	
assembly.			[06H]	
Metrology: Limits, f	fits and tolerance; automated	inspection an	d CMM. Selection of Manufacturing	
processes for a given	product.		[04H]	
High Speed Machin	ing: Introduction and concepts	s of HSM. Issu	es related to HSM. Comparison with	
conventional manufa	icturing processes.		[02H]	
Finishing Processes:	Introduction to finishing proces	s, grinding, Lap	ping, Honing, Super Finishing. [04H]	
Precision Manufact	uring Processes: Introduction	to micro fabri	cation processes and M4 processes:	
concepts of accuracy	, errors, influences of dimension	nal wear on acc	curacy. [02H]	
Suggested Textbooks	5:			
1. V.K. Jain Advanced Machining processes, Allied Publishers New Delhi 2002.				
2. Black S.C. Chiles,	, V.Lissaman, A.J. Martin, S.J.	Principles of E	ngineering Manufactures Arnold Edn.	
1996.				
References:				
1. G.F. Benedict, No	ntraditional Manufacturing pro	cesses, Marcel	Dekker, Inc. New York 1987.	

2. A. Ghosh and A.K. Malik Manufacturing Science Affiliated East West press Ltd. New Delhi 1985.

Subject Code:	OE4M36	Course Title	Quality, Reliability and
Contact Hours	L- 3 T- 0 P- 0		Maintenance Engineering
Programme	B.Tech	Credit	3
Pre-requisites	NIL	Semester	VIII
Evaluation scheme	Quiz (15%), Mid-sem (35%) and End-sem (50%)		

Quality: Quality conception, quality of design, quality of conformance, cost of quality and value of quality, quality objectives, role of Statistical Quality Control (SQC) for fulfilment of quality objectives; organisation for quality factors influencing quality. In control process and out of control process, causes of deviations, chance causes and assignable causes. [08H]

Control Charts: General theory, charts for variables and standard deviation, fraction defectives and number of defects per unit. Process capability studies, Non-conventional control charts. [09H]

Acceptance Sampling: Elementary concepts, sampling by attributes, single and double sampling plans, use of Dodge Roming and Military standard sampling tables, construction and use of O.C. curves, introduction to sampling by variates, continuous sampling plans. [08H]

Reliability: Introduction, failure rate curve, life testing, relationship between constant failure rate, mean life and other failure rates. O.C. curve for stipulated life; Producer and consumer risk in life testing, sampling plans, MIL-STD procedures for failure sequential life testing plans. Reliability study analysis, synthesis of system reliability, design for reliability, measurement of reliability. **[09H]**

Maintenance Engineering: Machine health monitoring, preventive and predictive maintenance; condition based maintenance; maintenance planning and scheduling; Application of latest techniques like fibre optics, signature analysis, thermography in maintenance engineering; failure analysis of vital components like bearings; seals; gears etc; Maintenance strategies and computer aided maintenance. [08H]

Text/Reference books:

- 1. Reliability and Maintenance Engineering by RC Mishra
- 2. J. M. Juran& Frank M. Gryna : Quality Planning and Analysis Tata McGraw-Hill

OE10 (Choose any one course from below electives)

Subject Code:	OE4E38	Course Title	Pattern Recognition and Machine	
Contact Hours	L-3, T-0, P-0		Learning	
Programme	B.Tech	Credit	3	
Pre-requisites	NIL	Semester	VII	
Evaluation scheme	5 % (Quiz 1), 20% Mid Ser	n, 5 % (Quiz 2), 40%	End Sem, 30% Project	
Supervised and Unsuperv	vised Learning; Bayes The	orum; Probability I	Distributions- Gaussian, Bernoulli;	
Central Limit Theorem; Na	ive Bayes; Logistic Regress	ion.	[10H]	
K-nearest Neighbors; Sup	oport Vector Machines; D	Decision Trees; Ran	dom Forests; Linear Discriminant	
Analysis; Perceptrons; Gradient Descent; Neural Networks. [10H]				
Convolutional Neural Networks; Algorithm Selection; Understanding Datasets; Regressions; Outliers;				
Clustering; Principal Component Analysis; Feature Scaling. [10H]				
Constrained and Unconstrained Optimizations; Autoencoder; Reinforcement Learning;				
Applications.			[10H]	
Text books:				
1. Bayesian Reasoning and	Machine Learning, by Dav	id Barber, Cambridg	e University Press. 2000.	
Reference books:				
1. Understanding Machin	e Learning: From Theory	to Algorithms, By S	hai Shalev-Shwartz and Shai Ben-	
David, Cambridge Universi	ity Press, 2014.			

2. Pattern classification, Second Edition by Richard O. Duda Peter E.Hart David G.Stork, John Wiley & Sons, INC, 2015.

Subject Code:	OE4E39		Course Title	Electromagnetic Interference and
Contact Hours	L-3, T-0, P-0			Compatibility
Programme	B.Tech		Credit	3
Pre-requisites	Fundamentals	0	f Semester	B.Tech -I
	Electromagnetic	and Field	ł	
	Theory			

Evaluation scheme Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)

Basic Concepts: Introduction and Definition of EMI and EMC with examples, various parameters, sources of EMI, EMI coupling modes - CM and DM, ESD phenomena, and effects, transient phenomena, biological effects of EM radiations, SAR. [10H]

Coupling Mechanism: High-frequency behavior of electrical and electronic components (conductors, capacitor, inductor, resistor, mechanical switches, transformer), electromagnetic field sources and coupling paths, common-mode coupling, differential mode coupling, impedance coupling, inductive and capacitive coupling, radiative coupling, ground loop coupling, and cable-related emissions and coupling. [10H]

EMI Mitigation Techniques: Working principle of shielding, shielding effectiveness, solutions to EMC problems, choice of shielding materials, gasketting, and sealing, PCB level shielding, principle of grounding or earthing, lightning protection-buildings and towers, lightning safety, filters, microwave absorbers, frequency selective surfaces, and metamaterials. [10H]

Measurement Methods and Instrumentation: Fundamental considerations, EMI shielding effectiveness tests, shielded anechoic chamber, waveguide measurement, free space-based non-destructive testing, open field test, TEM cell for immunity test, antennas, EMC analyzer, spectrum, and network analyzers.

[08H]

Standard and Regulations:Need for standards, generic/general standards for residential and industrial
environment, product standards, National and International EMI standardizing organizations.[04H]

Text/Reference books:

1. Clayton R.Paul – Introduction to Electromagnetic compatibility, 2nd Edition, 2006, Wiley & Sons.

- 2. B. Keiser, Principles of Electromagnetic Compatibility, 3rd Edition, 1987, Artech House.
- 3. V. P. Kodali, "Engineering EMC Principles, Measurements and Technologies" 1996, IEEE Press, New York.

Subject Code	OE4M40	Course Title	Computer Integrated Manufacturing	
Contact Hours	L-3,T-0 ,P-0		Systems	
Programme	B.Tech	Credit	3	
Pre-requisites:	None	Semester		
Evaluation scheme	Quiz (20%), Mid-Term (30%), End-Term (50%)			
Course Detail:				
Introduction: Production Systems; Automation in Production Systems; Manual Labor in Production				
Systems; Automation	Systems; Automation Principles and Strategies [03H]			
Manufacturing Operations: Manufacturing Industries and Products; Manufacturing Operations; Production				
Facilities; Product/Production Relationships; Lean Production [03H]				

Manufacturing Models and Metrics: Mathematical Models of Production Performance; Manufacturing Costs [03H]

Material Transport Systems:Introduction to Material Handling Equipment; Material Transport Equipment;Analysis of Material Transport Systems[03H]

Storage Systems: Storage System Performance and Location Strategies; Conventional Storage Methods and Equipment; Automated Storage Systems; Engineering Analysis of Storage Systems. [03H]

Introduction to Manufacturing Systems:Components of a Manufacturing System; Classification of
Manufacturing Systems; Overview of the Classification Scheme[03H]

Single-Station Manufacturing Cells: Single Station Manned Workstations; Single Station Automated Cells; Applications of Single Station Cells; Analysis of Single Station Cells [03H] Manual Assembly Lines: Fundamentals of Manual Assembly Lines; Analysis of Single Model Assembly Lines; Line Balancing Algorithms; Mixed Model Assembly Lines; [03H] Workstation Considerations: Other Considerations in Assembly Line Design; Alternative Assembly Systems [03H] Automated Production Lines: Fundamentals of Automated Production Lines; Applications of Automated Production Lines; Analysis of Transfer Lines. [02H] Automated Assembly Systems: Fundamentals of Automated Assembly Systems; Quantitative Analysis of [02H] Assembly Systems. Cellular Manufacturing: Part Families; Parts Classification and Coding; Production Flow Analysis; Cellular Manufacturing; Applications of Group Technology; Quantitative Analysis in Cellular Manufacturing. [03H] Flexible Manufacturing Systems: What is a Flexible Manufacturing Systems; FMS Components; FMS Applications and Benefits; FMS Planning and Implementation Issues; Quantitative Analysis of Flexible Manufacturing Systems. [03H] Quality Programs for Manufacturing: Quality in Design and Manufacturing; Traditional and Modern Quality Control; Process Variability and Process Capability; Statistical Process Control; Six Sigma; The Six Sigma DMAIC Procedure; Taguchi Methods in Quality Engineering; ISO 9000. [03H] Inspection Principles and Practices: Inspection Fundamentals; Sampling vs. 100% Inspection; Automated Inspection; When and Where to Inspect; Quantitative Analysis of Inspection [02H] **Text Books:**

1. James A. Rehg, Henry W. Kraebber, Computer Integrated Manufacturing, Pearson Prentice Hall, 2004

References:

1. A. Alavudeen, N. Venkateshwaran, Computer Integrated Manufacturing, PHI Learning Pvt. Ltd., 2008.

- 2. Alan Weatherall, Computer Integrated Manufacturing: From Fundamentals to Implementation,
- Butterworth-Heinemann, 2013.

		T.	
Subject Code:	OE4M41	Course Title	Micro and Nano Manufacturing
Contact Hours	L-3, T-0, P-0	Credit	3
Programme	B.Tech	Semester	VII
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)		
Learning Objective: To give awareness of different techniques used in micro and nano manufacturing.			

Module 1: Introduction to the course, classification of micromachining and nanofinishing processes, conventional micro and nano machining, Non-conventional micro and nano manufacturing and finishing approaches, micro and nanofabrication techniques, micro joining [07H]

Module 2: Diamond turn machining (DTM), components of DTM, requirements of DTM, material removal mechanism, molecular dynamics, tool geometry,0020CVD diamond technology, CVD diamond processes, treatment of substrate, modification of HFCVD process, nucleation and growth, deposition of 3-D substrates, wear of diamond. [08H]

Module 3: Laser micro and nano machining, fundamentals and their applications, focused ion beam machining, electro chemical spark micromachining, mechanism, equipment, electron beam micromachining, mechanism-process parameters, applications. Abrasive jet micromachining, erosion mechanism, powder feeding, microstructure fabrication. Ultrasonic micromachining, basic elements, mechanism of material removal, micro-hole drilling, contour machining, micro-de-burring, machining of ceramic materials. electrochemical micromachining, micro-electric discharge micromachining, principle, micro EDM system development, process parameters, analytical modeling. [15H]

Module 4: Micro/nano fabrication, materials for microsystems manufacture, substrates and wafers, active substrate materials, silicon and silicon components, photolithography based micro/nano fabrication processes, photo resist development, additive and subtractive techniques, CVD, PVD, etching, chemical, plasma, resists removal, large aspect ratio micro manufacturing, LIGA, deep reactive ion etching. [12H]

Text/Reference books:

1. Mark J. Jackson, Micro and Nanomanufacturing, Purdue University, Springer Book, 2007.

2. Waqar Ahmed and Mark J. Jackson, Emerging Nanotechnologies for Manufacturing, Second Edition, Elsevier Book, 2015.

3. Madou M. J. - 'Fundamentals of Microfabrication' - CRC Press - 2009 - 2nd Edition

OE11 (Choose any one course from below electives)

Subject Code:	OE4E44	Course Title	Photovoltaics: Fundamentals and
Contact Hours	L-3, T-0, P-0		Application
Programme	B.Tech	Credit	3
Pre-requisites	NIL	Semester	VII
Evaluation scheme			

Unit 1: Introduction to course, role of renewable energy in sustainable development; renewable energy sources, Solar radiation Review of Semiconductor Physics, Charge carrier generation and recombination, p-n junction model and depletion capacitance, Current voltage characteristics in dark and light.

Unit 2: Device Physics of Solar Cells, Principle of solar energy conversion, Conversion efficiency, Single, tandem multi-junction solar cells, Numerical solar cell modeling, Numerical solar cell modeling,

Unit 3: Crystalline silicon and III-V solar cells, Thin film solar cells: Amorphous silicon, Quantum Dot solar cells, Introduction to Dye Sensitized Solar Cells, Fabrication of Dye Sensitized Solar Cells, Design of novel dyes, Design of solid electrolytes materials, Counter electrode engineering.

Unit 4: Introduction to Organic Solar Cells, Physics of Bulk Heterojunction(BHJ) Solar Cells, Morphology and charge separation in BHJ, Design of low bandgap polymers, Perovskite Solar Cells, Fabrication of perovskite solar cells, Photo physics in perovskite solar cells, Stability in perovskite solar cells, Lead free perovskite solar cells.

Unit 5: Photovoltaic system engineering, Thermo- Photovoltaic generation of electricity, Concentration and storage of electrical energy, Photovoltaics modules, system and application, Green energy building. Nanomaterials for photovoltaics, PV panels with nanostructures, Band gap engineering and optical engineering, Photo thermal cells, Energy Economy and management

B.Des Semester-VII

Subject Code:	DS4013	Course Title:	Design Seminar 1	
Contact Hours:	L-0, T-0, P-0	Credit:	2	
Programme :	B.Des	Semester :	7	
Pre-requisites:	NIL			
Evaluation scheme	Presentation (15%), Problem Identification (30%), Time management (15%),			
Evaluation scheme	Design solution (40%)			

Subject Code:	DS4014	Course Title:	Design Thesis 1		
Contact Hours:	L-0, T-0, P-0	Credit:	16		
Programme :	B.Des	Semester :	7		
Pre-requisites:	NIL				
Students in this semester would take up a technically complex project. Example designing a coffee vending					
machine, packaging for life saving drugs etc. The students can do design thesis in-house but it would be					

advisable for them to go to industry/ design firms to do the thesis.

B.Tech/B.Des Semester-VIII

OE13 (Choose any one course from below electives)

Course Code	CS8013	Course Title	Mobile and Wireless Networks	
Contact Hours	L-3,T-0,P-0	Credit	3	
Program	B.Tech	Semester	VIII	
Pre-requisites	None			
Evaluation Scheme	Quiz I (10%), Mid-Ter	m (20%), Quiz II (10%), End term (40%), Project (20%)	
Learning Objective : After	completing this cours	e, the student wi	Il learn the enabling technology in the	
wireless networking along	with components and	subsystems used	in wireless networking.	
Course Details:				
Module 1: (Basic of wirel	ess communication &	channel) An Ov	erview of Wireless Systems: Wireless	
History, A taxonomy of w	wireless networks, Ce	llular Generation	s (from1G to 4G), Current & Future	
Wireless Technologies, Tr	ends. Radio Propagati	ion and Interfere	nce: Radio wave propagation, Multi-	
path characteristic of rad	io wave, Short/long to	erm fading, Indo	or and Outdoor propagation models.	
			[10H]	
Module 2: (Multiple Radio	Access & Multiple Div	ision Techniques	for Traffic Channels)	
Modulation techniques: D	igital Modulation in M	Iodern Wireless S	ystems (QPSK, DQPSK, p/4 DQPSK, n-	
QAM, OFDM). Multiple	Access Techniques: C	Contention-Based	(Random-based) Protocols (ALOHA,	
CSMA), Reservation based	ៅ Protocols (FDMA, TI	DMA, CDMA), Fu	ndamental of SC-FDMA and OFDMA,	
FHSS, DSSS.			[10H]	
Module 3: (Mobile Wirele	ess Networks) Cellular	concept: Basic p	rinciples of cellular systems, e.g., Cell	
layout, Planning, Interfere	ence. Traffic Channel /	Allocation & Mot	pility: Fixed Channel Allocation (FCA),	
Dynamic Channel Allocatic	on (DCA), Hybrid Chanr	nel Allocation (HC	A), Mobile IP. [10H]	
Module 4: (Wireless LAN a	& PAN) Wireless LAN:	Operation of IEEE	802.11 Wireless LAN, incl. CSMA/CA,	
RTS/CTS, power managen	1ent, 802.11a/b/g/n, 8	302.11e. Wireless	PAN: Overview of operation of low-	
power wireless systems ba	ased on IEEE 802.15.1	(Bluetooth) and I	EEE 802.15.4 (Zigbee). Introduction to	
WiMAX and LTE.			[10H]	
Text/ Reference books:				
1. Dharma P. Agrawal, Qing-An Zeng, Introduction to Wireless and Mobile Systems, Third Edition,				
Cengage learning, 2015.				
2. Kaveh Pahlavan, Principles of Wireless Networks: A Unified Approach, Second Revised Edition, John				
Wiley & Sons, Inc., 2011.				
3. Garg, Wireless Communications and Networks, Morgan Kaufmann, 2010.				

- 4. T. S. Rappaport, Wireless Communications-Principles and Practice, Second Edition, Pearson Education, 2002.
- 5. William Stallings, Wireless Communications and Networks, Second Edition, Pearson, 2005.

OE14 (Choose any one course from below electives)

Subject Code	EC8021	Course Title	Fundamentals of 5G and Bevond 5G
Contact Hours	L-3, T-0, P-0		Mobile Wireless Networks
Programme	B.Tech	Credit	3
Pre-requisites	Digital communications, Mobile	Semester	VIII
	Communications / Wireless	5	
	Communications		
Evaluation scheme	Quiz I (15%), Mid-Term (30%), C	2uiz II (15%), Ei	nd-Term (40%)
Learning Objective:	Understanding the basics of 5G a	and Beyond 5G	Wireless communication.
Providing a basic und	derstanding of the key technolog	ies and enable	rs of 5G and beyond communication
systems. Study of 56 wireless	channel models 5G techniques	e a massive M	IIMO mmWave etc. and applications
of 5G/B5G mobile wi	reless networks. Practical	C.g. 110331VE IV	invite, minivave etc. and applications
Course Detail : Journ	ney of 5G/B5G networks (1G to	B5G/5G-NR).	Wireless Channel Model and Fading.
Architecture of 5G/B	5G, Backbone of 5G/B5G Netwo	ork (CRAN, Op	tical Fiber based Backbone network,
Ultra Dense Netwo	rk(UDN), OFDMA, NOMA, MIN	10, Massive N	/IMO , Beamforming, Visible Light
Communication (VLC) 		
D2D Communication	n, Green 5G/B5G networks, mill	Imeter wave t	echnology, and QoS/QoE analysis of
wireless channel, app Week 1: Journov of 5	Dilication of AK/VK based on 5G/E	55G. NR) Wireless	Channel Model and Eading
Week 2: Architecture	of 5G/B5G		Channel Wouer and Fauling
Week 3: Backbone of	f 5G/B5G Network (CRAN and Or	tical Fiber bas	ed Backbone network)
Week 4: Ultra Dense	Network(UDN), OFDMA		,
Week 5: NOMA, MIN	10		
Week 6: Massive MI	MO , Beamforming, Visible Light	Communicatio	n (VLC)
Week 7: D2D Commu	unication, Green 5G/B5G networ	ks , ,	
week 8: Millimeter	wave technology, QoS/QoE ana	iysis of wireles	s channel and Application of AR/VR
Dased on 5G/B5G ,			
1 Martin Sautor "	From GSM From GSM to ITE_/	Advanced Pro	and 5G: An Introduction to Mobile
Networks and Mc	bile Broadband" Wiley-Blackwe		and 5G. An introduction to Mobile
2. Afif Osseiran. Jose	e.F.Monserrat. Patrick Marsch. "	 Fundamentals	of 5G Mobile Networks". Cambridge
University Press.			
3. Athanasios G.Kan	atos, Konstantina S.Nikita, Pana	giotis Mathio	poulos, "New Directions in Wireless
Communication Sy	ystems from Mobile to 5G", CRC	Press.	
4. Theodore S.Rapp	aport, Robert W.Heath, Rober	t C.Danials, Ja	ames N.Murdock "Millimeter Wave
Wireless Commun	ications", Prentice Hall Commun	ications	
5. Wei Xiang, Kan Zh	eng, Xuemin (Sherman) Shen, - 5	G Mobile Com	munications, Springer, 2017.
Reference books:			
1. Jonathan Rodrigue	z, "Fundamentals of 5G Mobile I	Networks", Joh	n Wiley & Sons.
2. Amitabha Ghosh a	nd Rapeepat Ratasuk "Essentials	of LTE and LTE	-A", Cambridge University Press.
Poforonco Donori			

Reference Paper:

A survey of 5G network: Architecture and emerging technologies

Subject Code:	ES407a	Course Title	Fundamentals of RF &
			Microwave
			Electronics
Contact Hours	L- 3 T- 0 P- 0	Credit	4
Programme	B.Tech	Semester	VIII
Pre-requisites	NIL		

Evaluation scheme Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)

Mathematical foundation in understanding of signals, circuits and devices: basic properties of Fourier Transforms, transmission line theory, T and π equivalent circuit, behaviour of transmission line at radio & microwave frequency. [10 H]

DC and Low Frequency Circuit Concepts: BJT Biasing, mode of operation small signal AC analysis. FET circuits at DC, AC analysis, first and second order AC models of FETs, high frequency models of BJT and FETs, single pole approximation, differential amplifiers, and frequency response. [10 H]

Circuit Representation of Two Port RF/ Microwave Networks: Impedance, Admittance, Hybrid, Transmission Matrix, Generalized S parameters, Reciprocal Networks, Loss less Networks, Signal Flow graphs and its Applications. [10 H]

Impedance Matching and network selection:power gain concept, mismatch factor, return loss, input/output VSWR, maximum gain, constant gain design, figure of merit, matching network design using lumped and distributed elements, stability consideration in active networks. **[10 H]**

- 1. T.C. Edwards, Foundations for Microstrip Circuit Design 1stEdition, Wiley Interscience.
- 2. Ulrich L. Rohde, Matthias Rudolph, RF / Microwave Circuit Design for Wireless Applications, 2nd Edition, 2012.

Subject Code:	ES407b	Course Title	Internet of Things		
Contact Hours	L- 3 T- 0 P- 0	Credit	4		
Programme	B.Tech	Semester	VIII		
Pre-requisites	NIL				
Evaluation scheme	Quiz I (15%), Mid-Term	(30%), Quiz II (15%), End-	Term (40%)		
IoT definitions: overview	, applications, potential	& challenges, and archite	cture. [6 H]		
Internet in general and	Internet of Things, Inte	rnet of Everything, Web	o of Things, and Making		
Things Smart.			[5 H]		
IoT communication prot	cocols, packets, services,	performance paramete	rs of a packet network as		
well as applications such	as web, Peer-to-peer, se	ensor networks, and mult	imedia. [6 H]		
Business Issues, Aspects	and Models of the Interr	net of Things. Making and	I Getting Things onto the		
Internet.			[5 H]		
Local Area Networks, MA	AC level, link protocols su	ich as: point-to-point pro	tocols, Ethernet, WiFi 802.11,		
cellular internet access,	and Machine-to-machine	<u>)</u> .	[6 H]		
Mobile Networking: roar	ming and handoffs, mobi	le IP, and ad hoc and infr	astructure less networks.		
-	-		[6 H]		
loT examples: Case studies, e.g. sensor body-area-network and control of a smart home. [6 H]					
Text/Reference books:					
Kurose, James F.; Ross, Keith W. Computer networking: a top-down approach, 5th ed.,					
international ed	international ed.: Boston, Mass.: Pearson, cop. 2010				

Subject Code:	ES407c	Course Title	Applied Photonics
Contact Hours Programme Pre-requisites	L- 3 T- 0 P- 0 B.Tech NIL	Credit Semester	4 VIII
			E T (400()

Evaluation schemeQuiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)

Introduction: Review of basic optics, wave propagation, polarization, diffraction, Gaussian Beams, Electrooptic effect, electro-optic modulators and their design considerations, Acousto-optic effect,

Raman Scattering and Bragg diffraction, acousto-optic modulators and deflectors. [10H]

Fibres: Principles of optical communication systems, optical sources and detectors, Optical fibres:

mode of an optical fibre, multimode fibres, single mode fibres and their propagation characteristics,

Dispersion management in optical fibres and link design considerations.[10H]

Integrated optics: Planar and channel waveguides, coupled and dielectric waveguides, dielectric backed waveguides, directional couplers, optical switch, electro-optic and acousto-optic waveguide devices. Display devices, holography and optical information processing. [10H]

Photonics: Introduction to Photonic crystals, Lithium Niobate Crystal, its lattice structure, polarization and anisotropy in the crystal, Photonic Band Gap effect, guided wave structure and components on Photonic Crystals, diffraction limit and constraints on physical dimensions. [10H]

Text/Reference books:

- 1. Photonic Crystals: Molding the Flow of Light, John D. Joannopoulos, Princeton University Press.
- 2. Optical Fibre Communications, Gerd Keiser, TMH, 2008.
- 3. IEEE Journal of Lightwave Technology, IEEE Photonics Journal.

Subject Code:	ES407d	Course Title	Operations Research		
Contact Hours	L- 3 T- 0 P- 0	Credit	4		
Programme	B.Tech	Semester	VIII		
Pre-requisites	NIL				
Evaluation scheme	Quiz (15%), Mid-sem (35	35%) and End-sem (50%)			

Modeling with Linear Programming - Two-Variable LP Model, Graphical LP Solution, Solution of a
Maximization Model, Solution of a Minimization Model, Selected LP Applications;[6 H]The Simplex Method and Sensitivity Analysis - LP Model in Equation Form, Transition from
Graphical to Algebraic Solution, The Simplex Method, Artificial Starting Solution, Special Cases in the
Simplex Method, Sensitivity Analysis - Graphical and Algebraic Sensitivity Analysis;[6 H]Duality and Post-Optimal Analysis - Definition of the Dual Problem, Primal-Dual Relationships,
Economic Interpretation of Duality, Post-Optimal Analysis;[6 H]Transportation Model and Its Variants - Definition of the Transportation Model, The
Transportation Algorithm, The Assignment Model;[6 H]Network Models - Minimal Spanning Tree Algorithm, Shortest-Route Problem, LP Formulation of the
Shortest-Route Problem, Maximal flow model, LP Formulation of Maximal Flow Model, Critical Path

(CPM) Computations, Construction of the Time Schedule, LP Formulation of CPM;.

[7 H]

Integer Linear Programming - Integer Programming Algorithms, Branch-and-Bound (B&B)Algorithm, Cutting-Plane Algorithm, Traveling Salesperson Problem (TSP), Heuristic Algorithms, B&BSolution Algorithm, Cutting-Plane Algorithm;[7 H]Deterministic Dynamic Programming - Recursive Nature of Computations in DP, Forward and
Backward Recursion, Selected DP Applications.[8 H]

- 1. Hamdy A. Taha Operations Research: An Introduction, Pearson.
- 2. Frederick S. Hiller, Gerald J. Lieberman, Introduction to Operations Research, McGraw Hill.
- 3. Ravindran, Phillips and Solberg, Operations Research: Principles and Practice, Wiley India.
- 4. Hillier and Liberman, Introduction to Operations Research: Concepts and Cases, McGraw-Hill.

Subject Code:	ES407f	Course Title	Social network			
			Analysis			
Contact Hours	L- 3 T- 0 P- 0	Credit	4			
Programme	B.Tech	Semester	VIII			
Pre-requisites	NIL					
Evaluation scheme						
Modeling with Linear P	r ogramming - Two-Varia	ble LP Model, Grap	hical LP Solution, Solution of a			
Maximization Model, So	lution of a Minimization	Model, Selected L	P Applications; [06 hr]			
The Simplex Method a	nd Sensitivity Analysis -	· LP Model in Equ	ation Form, Transition from			
Graphical to Algebraic S	olution, The Simplex Met	hod, Artificial Star	ting Solution, Special Cases in the			
Simplex Method, Sensiti	vity Analysis - Graphical	and Algebraic Sens	itivity Analysis; [06 hr]			
Duality and Post-Optim	al Analysis - Definition o	of the Dual Problen	n, Primal-Dual Relationships,			
Economic Interpretation	of Duality, Post-Optima	l Analysis; [06 hr]	· · · · · · · · · · · · · · · · · · ·			
Transportation Model	and Its Variants - De	finition of the T	ransportation Model, The			
Transportation Algorith	n, The Assignment Mode	el; [06 hr]				
Network Models - Min	imal Spanning Tree Algo	rithm, Shortest-Ro	oute Problem, LP Formulation of the			
Shortest-Route Problem	n, Maximal flow model,	LP Formulation o	f Maximal Flow Model, Critical Path			
(CPM) Computations, Co	onstruction of the Time S	chedule, LP Formu	lation of CPM; [07 hr]			
Integer Linear Program	ming - Integer Program	ming Algorithms,	Branch-and-Bound (B&B) Algorithm,			
Cutting-Plane Algorithn	n, Traveling Salespersor	n Problem (TSP),	Heuristic Algorithms, B&B Solution			
Algorithm, Cutting-Plane	Algorithm; [07 hr]		0 <i>i</i>			
Deterministic Dynamic	Programming - Recursive	e Nature of Compu	tations in DP, Forward and Backward			
Recursion, Selected DP	Applications. [08 hr]	·				
Text/Reference books:						
1. Hamdy A. Taha Oper	ations Research: An Intro	oduction, Pearson.				
2. Frederick S. Hiller, G	erald J. Lieberman, Introd	duction to Operation	ons Research, McGraw Hill.			
3. Ravindran, Phillips a	nd Solberg, Operations R	esearch: Principles	and Practice, Wiley India.			
4. Hillier and Liberman	Introduction to Operatio	ons Research: Cond	cepts and Cases, McGraw-Hill.			

Subject Code:	HS405a	Course Title	Culture and				
• • • • •		A W	Technology				
Contact Hours	L- 3 T- 0 P- 0 GD-1	Credit	4				
Programme Bro requisites	B.Tech	Semester	VIII				
Fre-requisites	NIL	(200/) Out- U (100/) Field	Taura (E00()				
Evaluation scheme	Quiz I (10%), Iviid-Term	(30%), QUIZ II (10%), ENG-	Term (50%)				
Culture, Technology and	Culture, Technology and Innovation – [8L]						
Culture a Technique- Rer	making of the human Bei	ng, Technological advanc	ement Vs. Culture, Four				
Cradles and Fertile Cresc	ent, Science and Techno	logy- an instrument of cu	lture- invention of wheel and				
fire, Philosophy -an adva	ncement in thought and	Intuitions, Art and archit	ecture, Inventions and				
discoveries- from huntin	g and food gathering to I	Vlass scale manufacturing	g.				
Age of Enlightenment	and Taskaslass. Duas an		[5L]				
Advancement in Science	and Technology- Pros an	a cons,Accomplishment	of Science and Technology and				
Ago of Povolution			[51]				
Industrialization and mu	tual dependency Urbaniz	vation and Nuclear famili	[JL] As Growth of Classes Age				
of Internationalization	tual dependency, or band						
Growth of Liberalism Gro	owth of Nationalism and	migration of Technology	from source to destinations				
miles apart. Nations at co	propetition-Arms Race. Ir	nperialism- Need identifi	cation and weathering of				
Culture							
Age of World Civilization	-		[10L]				
Limitations of Science an	d Technology,Limitation	s of Art and Civilization,O	utbreak of hostilities- Two				
World Wars- contributio	n of Technology and loos	ening of cultural moorin	gs.				
Search for Stabilization-			[6L]				
Globalization and Prolife	ration of Science and Teo	hnology, Stereotype pop	ulation and world- wide				
technology, Modernizati	on, Commitment and Co	nsciousness, New Power	Relationship- Need for Culture				
driven Technology.							
Text/Reference books:							
1. World Civilizations: T	heir History and Their Cu	Ilture VOL. A,B,C.					
2. A Cultural History of	India- A.L.Basham						
3. The Heroes of Histor	y- Will Durant						
4. Technopoly: The Suri	render of Culture to Tech	nology by Neil Postman					
5. Culture and Technolo	ogy Paperback – January	15, 2003by Andrew Mur	ohie (Author), John Potts				
6. Culture and Technolo	ogy: A Primer by Jennifer	Daryl Slack (Author),					
7. The Cultural Studies	Reader Paperback – Impo	ort, 9 Mar 2007by Simon	During (Editor)				

Subject Code:	FC419a	Course Title	BE and Microwave
Subject code.	204190	course mile	Engineering
Contact Hours	L- 3 T- 0 P- 0	Credit	4
Programme	B.Tech	Semester	VIII
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%), Mid-Term	(30%) <i>,</i> Quiz II (15	%), End-Term (40%)
Waveguides and Reso	nators: Review of EM	Theory: Wave	propagation through waveguides -
rectangular, circular, elli	ptical-cutoff frequency, r	nodes, group and	d phase velocities. Power Transmission
and losses in Waveguide	s. Excitation of various m	odes in Wavegui	ides, Microwave cavities – Rectangular
and Circular Cavity Res	onators. Semi-circular (Cavity Resonato	rs, Q factor of a Cavity Resonators.
			[12 H]
Microwave Component	s: Microwave Hybrid Circ	cuits –Waveguide	e Tees and Scattering Matrices. Magic
Tee and Hybrid Rings (R	at-race circuits) and the	ir Scattering mat	trices. Waveguide Corners, Bends and
Twists, irises, windows,	Directional couplers. Tw	vo-hole Directior	nal Couplers, S-matrix of a Directional
Coupler. Circulators and	Isolators.		[12 H]
Microwave Devices and	Measurements: Microw	ave Transistor; T	unnel Diode; Varacter Diode; Schottky
Diode; Gunn dio	de, IMPATT diode	es. Klystron,	Magnetron, Traveling Wave
Tubes.Measurement of	power, frequency an	d wavelength,	Measurement of impedance, SWR,
attenuation, Q of cavity	and noise factor.		[10 H]
Microwave Integrated c	ircuits: MMIC, strip and	microstrip lines,	slot and coplanar lines, planar circuits,
Passive elements, comp	onents and devices, Ana	alytical methods	associated with MIC theory, MMIC
Fabrication Technique	s, Printed Antennas,	Future trend	in MICs.
[6 H]			
1. EM Wave and Ra	idiating System by Jordan	n and Balmain	
2. Foundations for I	Microwave Engineering b	y Robert E Collin	
3. Microwave Devic	es and Circuits by Samue	l Y Liao	

4. Practical MMIC Design by Steve Marsh

Subject Code:	EC419b	Course Title	Power Electronics			
Contact Hours	L-31-0P-0	Credit	4			
Programme	B. lech	Semester	VIII			
Pre-requisites	NIL					
Evaluation scheme	n scheme Quiz I & II (15%), Midterm (25%), Assignments/Class Performance					
	(10%), End term (50%) (Tentative, decided at the beginning of the semester in					
	consultation with the s	tudents)				
Introductions: Power se	mi semiconductor device	es, Types of power electro	onic circuits and design of P			
Power electronics equip	ment, Applications of Pov	wer electronics.	[7 H]			
Semiconductor Diodes connected diodes, Diod diodes	and Circuits: Diode Cha les with different types	racteristics, Power Diod of loads(R, RC, RL, LC, F	e Types, Series and Parallel RLC Loads), Freewheeling [7 H]			
Diode Rectifiers: Single	phase half wave rectifier.	Single phase full wave re	ectifier. Single phase full wave			
rectifier with RL Load. Th	ree phase Bridge rectifie	r. Three phase Bridge rec	tifier with RL Load DC-DC			
Converters: Principles of	stepdown chopper and (operation. Principle of st	epup chopper and operation.			
classification of chopper	S.					
	-		[7 H]			
Thyristors: Thyristor Cha	aracteristics, Thyristor Tu	irn on and Turn off, Two	-transistor model of Thyristor,			
Thyristor types, Series	and Parallel operation of	of Thyristor Controlled I	Rectifiers: Principle of phase			
controlled converter op	eration, Single phase full	l-converters, Single phase	e semi- converter, Principle of			
three phase half wave C	onverters, Three phase fu	ull converters, Three phas	se Semi-converter. [7 H]			
Inverters: Single phase	series resonant inverte	r, Single phase bridge i	nverters, Three phase bridge			
inverters, Voltage contro	ol of inverters.		[5 H]			
AC Voltage Controllers:	Principle of On-Off and p	ohase controls, Single ph	ase ac voltage controller with			
resistive load, Single pha	ase ac voltage controller	with inductive load, Thre	e phase ac voltage controllers			
, Single phase Cyclo Con	verters, Three phase Cycl	lo Converters Some Appli	cations.			
			[9 H]			
Text/Reference books:						
1. M.H. Rashid, "Po	wer Electronics: Circuits,	Devices & Applications";	Prentice Hall (I) Pvt Ltd.			
2. Singh M.D., Khan	chandani K.B. "Power Ele	ectronics", 2 nd Edition, Tai	ta McGraw-Hill, 2007.			
3. Sen P.C., "Power	Electronics", Tata McGra	w-Hill, 2008.				
4. Mohan, Undelan	d, Robbins, "Power Electi	ronics", 3 rd edition, John	Wiley & Sons, 2002.			
5. Bose B.K., "Mode	ern Power Electronics & A	AC Drives", 1 st edition, PH	I <i>,</i> 2002.			

Subject Code:	EC419b	Course Title	Advance Filter
			Design
Contact Hours	L- 3 T- 0 P- 0	Credit	4
Programme	B.Tech	Semester	VIII
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%), Mid-Term	(30%), Quiz II (15%	6) <i>,</i> End-Term (40%)
Module I: Introduction of	of DSP		[8 H]
Discrete-time signals, se	equence operations, sam	pling, Digital Sigr	al Processing and its applications, filter
and its applications, Disc	crete Fourier and Z-trans	forms, system fui	nction for linear shift- invariant systems,
Fast Fourier Transform (FFT), fast convolution by	/ FFT using the ov	erlap-save or overlap-add methods, FFT
algorithms in linear filter	ring and correlation.		
Module II: Introduction	of Digital Filter		[10 H] Design of
Infinite Impulse Respon	se (IIR) digital filters by	transformation f	rom analog filters: Impulse Invariance,
Bilinear Transformation,	Matched Z-transforms, I	Design of LP, HP, E	SP, SP IIR Filters.
Design of Finite Impulse	e Response (FIR) digital	filters by Window	wing, Frequency Sampling, Design of
optimum equi-ripple line	ear phase FIR filters, Desi	gn of LP, HP, BP, S	P IIR Filters.
Module III: Advance me	thods of Filter Design		[10 H]
Optimization Methods for	or IIR and FIR filter Desigr	n: Deczky's metho	d for IIR filter design in the frequency
domain, Pade approxim	ation method, Least- so	juares design me	thod in time domain, Implementation
aspects: Quantization of	parameters, Finite word	-length, and Filter	Structures.
Module IV: Computer A	proaches of Filter Design	1	[10 H] Computer
Aided Design of FIR and	d IIR digital filters, Desig	gn of Digital filte	rs by Criterion Minimization,
Computer Added Design	of equireple FIR Filters, I	Digital IIR and FIR	Filter Design Using MATLAB.
Module V: Application of	of Digital Filters		[4 H]
Application of Digital	Filters in Signal and In	nage processing,	Biomedical signal processing, Speech
Processing etc.			
Text/Reference books:			
1. S. K. Mitra, Digita Hill. 2006.	l Signal Processing: A Co	omputer Based A	pproach. Tata McGraw Hill. McGraw
, 20001			

2. John G.Proakis, Dimitris G.Manobakis, Digital Signal Processing, Principles, Algorithms and Applications, Third edition, (2000) PHI

3. Digital Signal Processing Emmanuel C Ifeachor, Barrie W Jrevis, Pearson Education.

Subject Code:	ME419a	Course Title	Computer Integrated			
			Manufacturing			
Contact Hours	L- 3 T- 0 P- 0	Credit	4			
Programme Bro roquisitos	B.Tech	Semester	VIII			
Fre-requisites	$\frac{1}{1}$	$\Gamma(1)$ and $\Gamma(2)$				
Evaluation scheme	Quiz (15%), iviid-sem (3	5%) and End-sem (50%)				
Introduction: Production Systems; Automation in Production Systems; Manual Labor in Production						
Systems; Automation P	rinciples and Strategies		[3 H]			
Manufacturing Operatio	ons: Manufacturing Indus	stries and Products; Ma	nufacturing Operations;			
Production Facilities; Pro	oduct/Production Relatio	nships; Lean Productior	n [3 H]			
Manufacturing Models a Costs	and Metrics: Mathemation	cal Models of Productior	Performance; Manufacturing [3 H]			
Material Transport Syste	ems: Introduction to Mat	erial Handling Equipmer	nt; Material Transport			
Equipment; Analysis of	Material Transport Syster	ns	[3 H] Storage			
Systems: Storage System	n Performance and Locati	ion Strategies; Conventio	onal Storage Methods and			
Equipment; Automated	Storage Systems; Enginee	ering Analysis of Storage	Systems.			
			[3 H]			
Introduction to Manufac	cturing Systems: Compor	ents of a Manufacturing	System; Classification of			
Manufacturing Systems;	Overview of the Classifi	cation Scheme	[3 H] Single-			
Station Manufacturing C	ells: Single Station Mann	ed Workstations; Single	Station			
Automated Cells; Applic	cations of Single Station C	ells; Analysis of Single S	tation Cells [3 H] Manual			
Assembly Lines: Fundam	nentals of Manual Assem	bly Lines; Analysis of Sin	igle Model Assembly Lines; Line			
Balancing Algorithms; M	lixed Wodel Assembly Lin	es;				
Workstation Considerati	lons; Other Consideration	is in Assembly Line Desig	n; Alternative Assembly Systems [3 H]			
Automated Production L	ines: Fundamentals of A	utomated Production Lir	nes; Applications of			
Automated Production L	ines; Analysis of Transfe	Lines.	[2 H]			
Automated Assembly Sy	stems: Fundamentals of	Automated Assembly Sy	stems; Quantitative Analysis			
of Assembly Systems.			[2 H]			
Cellular Manufacturing:	Part Families; Parts Class	ification and Coding; Pro	duction Flow Analysis; Cellular			
Manufacturing; Applicat	tions of Group Technolog	y; Quantitative Analysis	in Cellular Manufacturing. [3 H]			
Flexible Manufacturing S	Systems: What is a Flexib	le Manufacturing System	ns; FMS Components; FMS			
Applications and Benefit	s; FMS Planning and Impl	ementation Issues; Qua	ntitative Analysis of Flexible			
Manufacturing Systems.			[3 H]			
Quality Programs for Ma	anufacturing: Quality in D	esign and Manufacturing	g; Traditional and Modern			
Quality Control; Process	Variability and Process C	apability; Statistical Proc	ess Control; Six Sigma; The Six			
Sigma DMAIC Procedure	e; Taguchi Methods in Qu	ality Engineering; ISO 90	00.			
Inconcision Dringinlag	d Draatiaaa laanaatian Fu	ndomontolo. Compliant	[3 H]			
Inspection Principles and M	d Practices: Inspection Fu	ndamentals; Sampling V	s. 100% Inspection; Automated			
Tout /Deference land W	mere to inspect; Quantita	ative Analysis of Inspecti				
	atod Manufacturing but	Ny Jamos A Doba (A.th	or) Hoppy M/ Krachhar (Auther)			
[1] Computer Integr	ated ivianuracturing by I	by James A. Reng (Auth	or, nenry w. Kraebber (Author)			

	t Code:	CS419a	Course Title	Computer Vision		
Conta			Cradit	4		
Drogra	mmo	L- S I- U P- U B Toch	Somostor	4		
		NII	Semester	VIII		
Fvalua	Evaluation scheme Quiz L (10%) Mid term (25%) Quiz L (10%) End term (40%) Project					
Lvalaa						
		(20%)				
Introd	uction: Introduct	ion to Computer Vision,	Image Formation and	Representation, Transformation:		
Orthog	gonal, Euclidean, A	Affine, Projective, etc.[3H]			
Low-le	vel processing: In	nage analysis, preproces	sing, Fourier Transform	n, Convolution and Filtering, Image		
Enhand	cement, Restorati	on, Histogram Processing	g [5H]			
Featur	e Extraction: Edg	ges - Canny, LOG, DOG;	Line detectors (Hough	Transform), Corners - Harris and		
Hessia	n Affine, Orientat	ion Histogram, SIFT, SUR	F, HOG, GLOH, Scale-S	pace Analysis- Image Pyramids and		
Gaussi	an derivative filte	rs, Gabor Filters and DW	Г [7H]			
Image	Segmentation: R	egion Growing, Edge Bas	sed approaches to seg	mentation, Graph-Cut, Mean-Shift,		
MRFs,	Texture Segment	ation; Object detection[7	HJ			
Object	Recognition: Stru	ictural Approaches, Mode	el-based Approaches, A	ppearance and Shape- based		
Approa	aches, Probabilisti	c Paradigms.	[4H]			
Patter	n Analysis: Cluste	ring: K-Means, K-Medoid	s, Mixture of Gaussians	, Classification: Discriminant		
Functio	on, Supervised, Ur	i-supervised, Semi-superv	vised; Classifiers: Bayes	, KNN, ANN models;		
Dimen	sionality Reductio	n: PCA, LDA, ICA; Non-pa	rametric methods	[7H]		
Motio	Motion Analysis: Background Subtraction and Modeling, Optical Flow, KLT, Spatio-Temporal Analysis,					
Dynamic Stereo; Motion parameter estimation [4H]						
_ ,	Applications and Performance Evaluation Measures: CBIR, CBVR, Security and Surveillance (Activity					
Applic	ations and Perfor	mance Evaluation Measu	ires: CBIR, CBVR, Securi	ty and Surveillance (Activity		
Applic Recogn	ations and Perfor nition, Biometrics	mance Evaluation Measu etc.), Medical imaging, D	ires: CBIR, CBVR, Securi ocument processing, in	ty and Surveillance (Activity nage fusion, Super-resolution,		
Applic Recogr Augme	ations and Perfor nition, Biometrics ented Reality, Perf	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea	ires: CBIR, CBVR, Securi ocument processing, in isures.	ty and Surveillance (Activity nage fusion, Super-resolution, [5H]		
Applic Recogr Augme Text/R	ations and Perfor hition, Biometrics ented Reality, Perf eference books:	mance Evaluation Measu etc.), Medical imaging, D ormance Evaluation Mea	ures: CBIR, CBVR, Securi ocument processing, in isures.	ty and Surveillance (Activity nage fusion, Super-resolution, [5H]		
Applic Recogr Augme Text/R 1.	ations and Perfor nition, Biometrics ented Reality, Perf eference books: Richard Szeliski, G	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea Computer Vision: Algorith	ares: CBIR, CBVR, Securi ocument processing, in isures.	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited		
Applic Recogr Augme Text/R 1.	ations and Perfor hition, Biometrics ented Reality, Perf eference books: Richard Szeliski, 6 2011.	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea Computer Vision: Algorith	ures: CBIR, CBVR, Securi ocument processing, in isures.	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited		
Applic Recogr Augme Text/R 1. 2.	ations and Perfor nition, Biometrics ented Reality, Perf deference books: Richard Szeliski, 9 2011. Computer Vision	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea Computer Vision: Algorith : A Modern Approach, D.	Ires: CBIR, CBVR, Securi ocument processing, in isures. Inms and Applications, S A. Forsyth, J. Ponce, Pe	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited varson Education, 2003.		
Applic Recogr Augme Text/R 1. 2. 3.	ations and Perfor hition, Biometrics ented Reality, Perf eference books: Richard Szeliski, 6 2011. Computer Vision Richard Hartley	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea Computer Vision: Algorith : A Modern Approach, D. and Andrew Zisserman,	ares: CBIR, CBVR, Securi ocument processing, in isures. hms and Applications, S A. Forsyth, J. Ponce, Pe Multiple View Geome	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited parson Education, 2003. try in Computer Vision, Second		
Applic Recogr Augme Text/R 1. 2. 3.	ations and Perfor nition, Biometrics ented Reality, Perf eference books: Richard Szeliski, 9 2011. Computer Vision Richard Hartley Edition, Cambrid	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea Computer Vision: Algorith : A Modern Approach, D. and Andrew Zisserman, ge University Press, Marc	ares: CBIR, CBVR, Securi ocument processing, in isures. hms and Applications, S A. Forsyth, J. Ponce, Pe Multiple View Geome ch 2004.	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited earson Education, 2003. try in Computer Vision, Second		
Applic Recogn Augme Text/R 1. 2. 3. 4.	ations and Perfor hition, Biometrics ented Reality, Perf eference books: Richard Szeliski, 6 2011. Computer Vision Richard Hartley Edition, Cambrid K. Fukunaga; Int	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea Computer Vision: Algorith : A Modern Approach, D. and Andrew Zisserman, ge University Press, Marc roduction to Statistical	ares: CBIR, CBVR, Securi ocument processing, in isures. A. Forsyth, J. Ponce, Pe Multiple View Geome th 2004. Pattern Recognition, Su	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited varson Education, 2003. try in Computer Vision, Second econd Edition, Academic Press,		
Applic Recogn Augme Text/R 1. 2. 3. 4.	ations and Perfor nition, Biometrics ented Reality, Perf eference books: Richard Szeliski, o 2011. Computer Vision Richard Hartley Edition, Cambrid K. Fukunaga; Int Morgan Kaufmar	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Mea Computer Vision: Algorith : A Modern Approach, D. and Andrew Zisserman, ge University Press, Marc roduction to Statistical I on, 1990.	ares: CBIR, CBVR, Securi ocument processing, in isures. A. Forsyth, J. Ponce, Pe Multiple View Geome th 2004. Pattern Recognition, Se	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited earson Education, 2003. try in Computer Vision, Second econd Edition, Academic Press,		
Applic Recogn Augme Text/R 1. 2. 3. 4.	ations and Perfor nition, Biometrics ented Reality, Perf eference books: Richard Szeliski, 6 2011. Computer Vision Richard Hartley Edition, Cambrid K. Fukunaga; Int Morgan Kaufmar	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Measu Computer Vision: Algorith : A Modern Approach, D. and Andrew Zisserman, ge University Press, Marc roduction to Statistical I an, 1990.	ares: CBIR, CBVR, Securi ocument processing, in isures. A. Forsyth, J. Ponce, Pe Multiple View Geome ch 2004. Pattern Recognition, So ge Processing Addison-	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited varson Education, 2003. try in Computer Vision, Second econd Edition, Academic Press,		
Applic Recogn Augme Text/R 1. 2. 3. 4. 5.	ations and Perfor nition, Biometrics ented Reality, Perf eference books: Richard Szeliski, G 2011. Computer Vision Richard Hartley Edition, Cambrid K. Fukunaga; Int Morgan Kaufmar R.C. Gonzalez an	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Measu Computer Vision: Algorith : A Modern Approach, D. and Andrew Zisserman, ge University Press, Marc roduction to Statistical I an, 1990. d R.E. Woods, Digital Ima	ares: CBIR, CBVR, Securi ocument processing, in isures. A. Forsyth, J. Ponce, Pe Multiple View Geome th 2004. Pattern Recognition, So ge Processing, Addison-	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited parson Education, 2003. try in Computer Vision, Second econd Edition, Academic Press, • Wesley, 1992.		
Applic Recogn Augme Text/R 1. 2. 3. 4. 5.	ations and Perfor nition, Biometrics ented Reality, Perf eference books: Richard Szeliski, 6 2011. Computer Vision Richard Hartley Edition, Cambrid K. Fukunaga; Int Morgan Kaufmar R.C. Gonzalez an	mance Evaluation Measu etc.), Medical imaging, D formance Evaluation Measu Computer Vision: Algorith : A Modern Approach, D. and Andrew Zisserman, ge University Press, Marc roduction to Statistical I an, 1990. d R.E. Woods, Digital Ima	ares: CBIR, CBVR, Securi ocument processing, in isures. A. Forsyth, J. Ponce, Pe Multiple View Geome th 2004. Pattern Recognition, So ge Processing, Addison-	ty and Surveillance (Activity nage fusion, Super-resolution, [5H] pringer-Verlag London Limited varson Education, 2003. try in Computer Vision, Second econd Edition, Academic Press, • Wesley, 1992.		

Credit

Semester

Quiz I (15%), Mid term (30%), Quiz II (15%), End term (40%)

4

VIII

[10 H]

[10 H]

[10 H]

[07 H]

[05 H]

'ext/	Reference	books	::	
~ -		// - ···		

Distributed Coordination-based Systems

Contact Hours

Pre-requisites

Evaluation scheme

Programme

A S Tanenbaum, "Distributed Systems: Principles and Paradigms", PHI, 2007

L-3T-0P-0

B.Tech

NIL

Introduction, Architectures, Processes, Communication.

Fault Tolerance, Security, Distributed Object-based Systems

Distributed File Systems, Distributed Web-based Systems

Naming, Synchronization, Consistency and Replication

Subject Code:	CS419c	Course Title	Quantitative M Software Engir	Aethods in neering
Contact Hours Programme Pre-requisites	L- 3 T- 0 P- 0 B.Tech NIL	Credit Semester	4 VIII	
Evaluation scheme	Quiz I (10%), Mid-term (20%), Quiz II (10%),	End term (40%), Te	erm
Project (20%)				
Assessment in Software Controlled Experiment, Controlled Experiments, Controlled Experimenta and Surveys, Design and Interpretation Planning, Designing, C	Assessment in Software Engineering, Software Measurement and Metrics, Research Method in SE - Controlled Experiment, Case studies, Surveys, and others [12 H] Controlled Experiments, Design of Experiments, Simulation Methods, Examples and Case Studies for Controlled Experimentations, Data Collection and Analysis, Validity and Interpretation [12 H] Case Studies and Surveys, Design and Execution, Data Collection, Data Analysis, Statistical Data Analysis, Validity and Interpretation [12 H] Planning, Designing, Conducting Empirical Studies, Replication, Documentation, Review, Examples			
Text/Reference books: 1. Basics of Softwar	re Engineering Experimen	tation. Natalia Juris	to and Ana M. More	eno. Kluwer.

1. Basics of Software Engineering Experimentation, Natalia Juristo and Ana M. Moreno, Kluwer, 2001.

2. Guide to Advanced Empirical Software Engineering, Forest Shull, Janice Singer, and Dag I.K. Sjøberg, Springer 2008

Subject Code:	EC420a	Course Title	Advanced Control S	ystems
Contact Hours	L- 3 T- 0 P- 0	Credit	4	
Programme	B.Tech	Semester	VIII	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Mid-Term	(30%), Quiz II (15%), End-Term (40%)	
Introductions: Introduct	ion and applications of C	ontrol Theory in d	fferent fields.	[1 H] State
Variable Analysis and D	Design: State Variable Ro	epresentation, Co	nversion between Sta	ate Variable
Models to	Transfer function and	l Vice-versa, Ei	gen Values, Eigen	Vectors,
Diagonalization, Solution	i of State Equations, Cont	trollability and Obs	servability, Pole place	ment by State
feedback, Design of St	ate Observer: Full ord	er and Reduced	order state observe	er, Compensator
Design by Separation Pri	nciple Servo Design: Intro	oduction of the Re	ference input by Feed	l-forward Control,
State Feedback with integral Control [8 H] Digital Control System, The				
z-transform, Inverse z-transform, Pulse Transfer Function, z- and s- plane relationship, z-transform				
analysis of Sampled-data Control System, Stability analysis of Sampled-data Control System,				
[8 H]				
Design of Feedback Control System : Preliminary consideration of Classical Design, Realization and Design				
of Basic Compensator, Design of PID controller [8 H] Design of				
Digital Control System: Z-plane Specifications of Control System Design, Digital Compensator Design				
using Frequency Respor	using Frequency Response Plots, Digital Compensator design using Root locus plots, Design of Digital			
PID controller				[8 H] Optimal
Control Systems: Parameter Optimization, Optimal Control Problem: Transfer Function Approach, Optimal				
Control Problem: State V	ariable Approach			[5 H]
Introduction to Adaptive	• Control (Model Referen	ce Adaptive Contro	ol),	[4 H]
Text/Reference books:				
1. Digital Control an	d State Variable Method	s by M Gopal, McG	Fraw-Hill, 2003	
Control Systems	Engineering by I J Nagratl	h and M Gopal, Ne	w age International,	2007

Subject Code:	EC420b	Course Title	VLSI Test and Testability
Contact Hours	L- 3 T- 0 P- 0	Credit	4
Programme	B.Tech	Semester	VIII
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%). Mid-Term	(30%). Ouiz II (15%	6). End-Term (40%)

Fundamental of VLSI Testing Basic of VLSI testing, Scope of testing and verification in VLSI design process, Issues in test and verification of complex chips, embedded cores and SOCs. **[12 H]**

Fault Modeling and Testing Fault models, fault detection and redundancy, fault equivalence and fault location, fault dominance, automatic test pattern generation, Design for testability, Scan design, Test interface and boundary scan. System testing and test for SOCs. Delay fault testing. **[12 H]**

Test automation and Design verification BIST for testing of logic and memories, Test automation, Design verification techniques based on simulation, analytical and formal approaches. **[10 H]**

Module 4 Functional and Timing verification

Functional verification, Timing verification, Formal verification, Basics of equivalence checking and model checking, Hardware emulation. **[8 H]**

Text/Reference books:

- 1. M. Abramovici, M. A. Breuer and A. D. Friedman, Digital System Testing and Testable Design, Jaico Publishing House, 1990.
- 2. T. Kropf, Introduction to Formal Hardware Verification, Springer Verlag, 2000.
- 3. Neil H. E. Weste and Kamran Eshraghian, Principles of CMOS VLSI Design, Addison Wesley, Second Edition, 1993.
- 4. Neil H. E. Weste and David Harris, Principles of CMOS VLSI Design, Addison Wesley, Third Edition, 2004.
- M. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, 2000.
 Parag K. Lala, Digital Circuit Testing and Testability, Academic Press, 1997

Subject Code:	EC420c	Course Title	Information Theory		
-			and Coding		
Contact Hours	L- 3 T- 0 P- 0	Credit	4		
Programme	B.Tech	Semester	VIII		
Pre-requisites	NIL				
Evaluation scheme	Evaluation scheme Quiz I (15%), Mid-Term (30%), Quiz II (15%), End-Term (40%)				
Review of probability theory, Entropy: marginal entropy, joint entropy, conditional entropy and the chain					
rule for entropy. Mutual information between ensembles of random variables. [6 H] Source					
Coding theorems: prefix, variable and fixed length codes. Channel models and channel capacity.					
Channel Coding theorem	Channel Coding theorem. [9 H]				
Linear Block Codes: Generator and parity check matrices, Minimum Distance, Syndrome					
decoding, Bounds on minimum distance. [9 H]					
Cyclic Code: Finite Fields, binary BCH codes, RS Codes. [9 H]					
Convolutional Codes: En	icoders, Trellis, Viterbi decoding. [9 H]				
Text/Reference books:					
1. Thomas M. Grover and Joy A. Thomas, "Elements of Information Theory," Wilev.					

2. John G. Proakis and Masoud Salehi, "Digital Communications," 5th edition, McGraw Hill.

Subject Code:	ME420b	Course Title	Mechanics of Composite Materials
Contact Hours	L- 3 T- 0 P- 0	Credit	4
Programme	B.Tech	Semester	VIII
Pre-requisites	NIL		
Evaluation scheme	(20%), Mid-sem(25%), Project (15%) and End-sem(40%)		

Introduction

Basic concepts and mechanical behaviour of laminated fiber-reinforced composite materials, applications to engineering structures, different types of fibers and matrices. **[8 H] Micromechanics** Prediction of elastic constants and strengths, mechanics of load transfer from matrix to fiber. **[8 H]**

Macromechanics

Theory of elasticity for anisotropic materials, constitutive law for laminae, transformation of stresses, strains and material properties. Constitutive law for laminates and significance of [A], [B] and [D] stiffness matrices, stress and strain analyses of laminates, failure criteria, hygrothermal stresses, bending of plane anisotropic beams, classical and first order theories of laminated composite plates, analysis of Sandwich Plates, buckling analysis of laminate composite plates, first order shear deformation theory, inter-laminar stresses and delamination. **[20 H]**

Several Aspects of Design

Composite tailoring and design issues, statics and elastic stability of initially curved and twisted composite beams, plates and sandwich structures. **[5 H]**

- [1] R M Jones (1999), "Mechanics of Composite Materials (2nd Ed)," Taylor and Francis, India.
- [2] B D Agarwal, L J Broutman and K Chandrashekhara (2006), "Analysis and Performance of Fiber Composites (3rd Ed)," John Wiley and Sons, Inc., New Delhi, India.
- [3] Autar K Kaw (2006), "Mechanics of Composite Materials (2nd Ed)," Taylor and Francis, USA.
- [4] Reddy, J.N., Mechanics of Laminated Composite Plates and Shells Theory and Analysis, CRC Press, 2nd Edition, 2004.

Subject Code:	CS420a	Course Title	Big Data Analytics		
Contact Hours	L- 3 T- 0 P- 0	Credit	4		
Programme	B.Tech	Semester	VIII		
Pre-requisites	NIL				
Evaluation scheme	Project/Quiz I (30%), Mid term (30%), End term (40%)				
Introduction: Introductio	on: Big Data Challenges [6	jL]			
Big Data Collection: Data	a Cleaning and Integration	n, Hosted Data Platforms	and the Cloud[6L] Big Data		
Storage Modern Databases, Distributed Computing Platforms, NoSQL, NewSQL [10L] Big Data Systems:					
Characteristics of Big Data and Dimensions of Scalability, Multicore Scalability, Security, User Interfaces					
for Data[10L]					
Big Data Analytics: Getting Value out of Big Data, Machine Learning Tools, Fast Algorithms, Data Compression, Information Summarization [10L]					
Text/Reference books:					
1. EMC education services, "Data Science and Big data analytics", Willey India, 2015					
2. Technical papers from major journals and major conferences on computing, networking, cloud computing.					

Subject Code:	CS420b	Course Title	Principles of		
			Programming Languages		
Contact Hours	L- 3 T- 0 P- 0	Credit	4		
Programme	B.Tech	Semester	VIII		
Pre-requisites	NIL				
Evaluation scheme	Quiz I (10%), Mid-term (20%), Quiz II (10%	5), End term (40%), Term		
	Assignments (20%)				
Introduction, Programming Languages, Syntax, Grammar, Ambiguity, Syntax and Semantics, Data Types (Primitive/Ordinal/Composite data types, Enumeration and sub-range types, Arrays and slices, Records, Unions, Pointers and pointer problems) [10 H] Expressions, Type conversion, Implicit/Explicit conversion, type systems, expression evaluation, Control Structures [5 H] Binding and Types of Binding, Lifetime, Referencing Environment (Visibility, Local/Nonlocal/Global variables), Scope (Scope rules, Referencing operations, Static/Dynamic scoping) [5 H]					
Subprograms, signature, Types of Parameters, Formal/Actual parameters, Subprogram overloading, Parameter Passing Mechanisms, Aliasing, Eager/Normal-order/Lazy evaluation), Subprogram Implementation (Activation record, Static/Dynamic chain, Static chain method, Display method, Deap/Shallow access, Subprograms as parameters, Labels as parameters, Generic subprograms, Separate/Independent compilation) [12 H] Logic Programming, Predicate calculus, Clausal form, Resolution, PROLOG programming language, Facts and rules, Backtracking, Lists, Limitations of PROLOG), Functional Programming (Lambda notation, Referential transparency, Functional forms, LISP and SCHEME programming languages, S-expression, Define and Eval functions) [10 H]					
Text/Reference books:					
 Allen B. Tucker, Robe Hill, 2006 Bruce J. MacLennan, Implementation 3rd 	Allen B. Tucker, Robert Noonan, Programming Languages: Principles and Paradigms, McGraw- Hill, 2006 Bruce J. MacLennan, Principles of Programming Languages: Design, Evaluation, and				
Implementation, 3rd Edition, Oxford University Press, 1999. T.W.Pratt, M.V.Zelkowitz, Programming Languages, Design and Implementation, Prentice Hall, 4th Edition, 2001					

Subject Code:	CS420d	Course Title	Randomized	
			Algorithms	
Contact Hours	L- 3 T- 0 P- 0	Credit	4	
Programme	B.Tech	Semester	VIII	
Pre-requisites	NIL			
Evaluation scheme	Project/Quiz I (30%), Mi	id term (30%), End t	erm (40%)	
Tools and Techniques: B	asic probability theory; ra	andomized complex	ity theory; game-theoretic	
techniques; Markov, Che	ebyshev, and moment ine	equalities; limited in	dependence; coupon collection and	
occupancy problems; tai	il inequalities and Cherno	off bounds; condition	nal expectation and martingales;	
Markov chains and rand	om walks; stable distribu	tions; probability an	nplification and derandomization.	
			[20L]	
Applications: sorting and	d searching; data structur	es; combinatorial o	ptimization and graph algorithms;	
geometric algorithms and linear programming; approximation and counting problems; metric embedding;				
online and streaming algorithms; nearest neighbors, and clustering; number-				
theoretic algorithms. [22L]				
theoretic algorithms.			[ZZL]	
theoretic algorithms. Text/Reference books:			[22L]	
theoretic algorithms. Text/Reference books: 1. Motwani and Raghav	van. Randomized Algorith	ms, Cambridge Univ	رعدار versity Press, 1995.	
theoretic algorithms.Text/Reference books:1. Motwani and Raghav2. Mitzenmacher and	van. Randomized Algorith Upfal. Probability an	ms, Cambridge Univ d Computing: Ra	رعدل versity Press, 1995. andomized Algorithms and	
theoretic algorithms. Text/Reference books: 1. Motwani and Raghaw 2. Mitzenmacher and Probabilistic Analysis	van. Randomized Algorith Upfal. Probability an s, Cambridge University P	ms, Cambridge Univ d Computing: Ra ress, 1995.	[22L] versity Press, 1995. andomized Algorithms and	
 theoretic algorithms. Text/Reference books: Motwani and Raghav Mitzenmacher and Probabilistic Analysis William Feller. An int 	van. Randomized Algorith Upfal. Probability an a, Cambridge University P troduction to Probability	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App	[22L] versity Press, 1995. andomized Algorithms and plications, Volumes I and II, John	
 theoretic algorithms. Text/Reference books: Motwani and Raghav Mitzenmacher and Probabilistic Analysis William Feller. An int Wiley, New York, 196 	van. Randomized Algorith Upfal. Probability an 5, Cambridge University P troduction to Probability 58.	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App	[22L] versity Press, 1995. andomized Algorithms and blications, Volumes I and II, John	
 theoretic algorithms. Text/Reference books: Motwani and Raghaw Mitzenmacher and Probabilistic Analysis William Feller. An int Wiley, New York, 196 Patrick Billingsley. Pro- 	van. Randomized Algorith Upfal. Probability an c, Cambridge University P troduction to Probability 58. obability and Measure, Jo	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App ohn Wiley and Sons,	versity Press, 1995. andomized Algorithms and plications, Volumes I and II, John 1986.	
 theoretic algorithms. Text/Reference books: Motwani and Raghav Mitzenmacher and Probabilistic Analysis William Feller. An int Wiley, New York, 196 Patrick Billingsley. Pro- 	van. Randomized Algorith Upfal. Probability an a, Cambridge University P troduction to Probability 58. obability and Measure, Jo	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App ohn Wiley and Sons,	[22L] versity Press, 1995. andomized Algorithms and plications, Volumes I and II, John 1986.	
 theoretic algorithms. Text/Reference books: Motwani and Raghaw Mitzenmacher and Probabilistic Analysis William Feller. An int Wiley, New York, 196 Patrick Billingsley. Pro Subject Code:	van. Randomized Algorith Upfal. Probability an c, Cambridge University P troduction to Probability 58. obability and Measure, Jo EC421a	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App ohn Wiley and Sons, Course Title	[22L] versity Press, 1995. andomized Algorithms and olications, Volumes I and II, John 1986. CMOS Memory	
 theoretic algorithms. Text/Reference books: 1. Motwani and Raghaw 2. Mitzenmacher and Probabilistic Analysis 3. William Feller. An int Wiley, New York, 196 4. Patrick Billingsley. Pro 	van. Randomized Algorith Upfal. Probability an c, Cambridge University P troduction to Probability 58. obability and Measure, Jo EC421a	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App ohn Wiley and Sons, Course Title	[22L] versity Press, 1995. andomized Algorithms and plications, Volumes I and II, John 1986. CMOS Memory System Design	
 theoretic algorithms. Text/Reference books: Motwani and Raghav Mitzenmacher and Probabilistic Analysis William Feller. An int Wiley, New York, 196 Patrick Billingsley. Pro Subject Code: Contact Hours	van. Randomized Algorith Upfal. Probability an c, Cambridge University P troduction to Probability 58. obability and Measure, Jo EC421a L- 3 T- 0 P- 0	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App ohn Wiley and Sons, Course Title Credit	[22L] versity Press, 1995. andomized Algorithms and olications, Volumes I and II, John 1986. CMOS Memory System Design 4	
 theoretic algorithms. Text/Reference books: 1. Motwani and Raghav 2. Mitzenmacher and Probabilistic Analysis 3. William Feller. An int Wiley, New York, 196 4. Patrick Billingsley. Prosect Code: Subject Code: Contact Hours Programme 	van. Randomized Algorith Upfal. Probability an 5, Cambridge University P troduction to Probability 58. obability and Measure, Jo EC421a L- 3 T- 0 P- 0 B.Tech	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App ohn Wiley and Sons, Course Title Credit Semester	[22L] versity Press, 1995. andomized Algorithms and olications, Volumes I and II, John 1986. CMOS Memory System Design 4 VIII	
 theoretic algorithms. Text/Reference books: Motwani and Raghav Mitzenmacher and Probabilistic Analysis William Feller. An int Wiley, New York, 196 Patrick Billingsley. Pro Subject Code: Contact Hours Programme Pre-requisites 	van. Randomized Algorith Upfal. Probability an c, Cambridge University P troduction to Probability 58. obability and Measure, Jo EC421a L- 3 T- 0 P- 0 B.Tech NIL	ms, Cambridge Univ d Computing: Ra ress, 1995. Theory and Its App ohn Wiley and Sons, Course Title Credit Semester	versity Press, 1995. andomized Algorithms and olications, Volumes I and II, John 1986. CMOS Memory System Design 4 VIII	

Introduction to SRAM memory

Overview, volatile memory, non-volatile memory, on-chip memory, on-chip memory types. Review of CMOS circuit design, sensing circuitry basics, write circuitry and other peripheral circuities, refresh, kickback, SRAM (Read and Write operation, 6T, 8T cell implementation etc.).

DRAM Memories

[10H]

[10H]

Introduction to DRAM, High speed DRAM architectures, open and folded arrays organizations, bandwidth, latency, and cycle time, power, timing circuits. DRAM Cells read and write operations, issues and challenges related to destructive read operations. Peripheral circuitries, row and column decoders.

FLSAH Memories

Operation of FLASH memories (FLASH array sensing and programming), Charge Pump, PROM, EPROM, EEROM, NAND and NOR flash memories.

Emerging Memories

Emerging devices for memories such as Memristor, and other memories (RRAM, PCRAM, STRAM etc)

[10H]

[10H]

- 1. Semiconductor Memories: A Handbook of Design, Manufacture and Application, Betty Prince, Wiley, 2nd Edison, 1996.
- 2. DRAM Circuit Design: Fundamental and High-Speed Topics, Keeth, Baker, Johnson, and Lin, Wiley, IEEE 2007.
- 3. CMOS Circuit Design, Layout, and Simulation, Jacob Baker, Wiley-IEEE, Third Edition, 2010.
- 4. Semiconductor Memories: Technology, Testing, and Reliability, Ashok K. Sharma, Wiley- IEEE, 2013.

Subject Code:	EC421c	Course Title	Optical	
			Commur	nication
Contact Hours	L- 3 T- 0 P- 0	Credit	4	
Programme	B.Tech	Semester	VIII	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Mid-Term	(30%), Quiz II (15%)), End-Term (40%)
Optical Fibres:				
Introduction to Modern	Communication Trends,	Optical Fibres: Ray	and mode theori	es, V number,
types of fibres, single me	ode, multimode, step and	d graded index fibre	s, attenuation ar	nd dispersion
issues, fibre fabrication	methods	-		[12H] Optical
Sources:				
Parameters of Optical s	ources for OFC, LED: dire	ect and indirect bar	nd gap semicond	uctors, materials used
for fabrication, fabricat	ion techniques, Surface	and edge emitting	LEDs, Internal a	nd External Quantum
Efficiency, Laser Diodes	: Fabry Perot cavities, mo	odes in LDs, fabrica	tion process, VC	SELs, Lasing equations
	, ,		· ·	[10H]
Optical Detectors:				
Photodetectors. PIN di	iodes. APDs. Phototrans	sistors. Fibre Opti	c Receivers: Rec	ceiver noise. Receiver
Configurations. Sensitivi	ty Issues. etc.	·····, ····		[10H]
Applications:	-,,			[]
Design Considera	ations of a	n Optical	Fibre	Transmission System.
Link Budget Equations, [Digital Link Design, modu	lation techniques. E	DFA. Advanced F	-0
systems: POF systems. L	ong haul and very high da	ata rate systems. W	DM. DWDM	[8H]
Text/Reference books:			,	
1. Optical Fibre Con	nmunications. Gerd Keise	er. TMH. 2008.		
2. Optical Fibre Cor	nmunications: Principles	and Practice. John N	M Senior. Pearsor	n education. 2009.
3. Introduction to	Fibre Optics, Ajov Ghatak	and K. Thavgaraian	, Cambridge univ	ersity Press
	, , , ,	, , , ,	· •	•

Subject Code:	ME421c	Course Title	Quality, Reliability and
			Maintenance
			Engineering
Contact Hours	L- 3 T- 0 P- 0	Credit	4
Programme	B.Tech	Semester	VIII
Pre-requisites	NIL		
Evaluation scheme	Quiz (15%), Mid-sem (35%) and End-sem (50%)		

QUALITY: Quality conception, quality of design, quality of conformance, cost of quality and value of quality, quality objectives, role of Statistical Quality Control (SQC) for fulfilment of quality objectives; organisation for quality factors influencing quality. In control process and out of control process, causes of deviations, chance causes and assignable causes. **[8 H]**

CONTROL CHARTS: General theory, charts for variables and standard deviation, fraction defectives and number of defects per unit. Process capability studies, Non-conventional control charts. **[09 hr] ACCEPTANCE SAMPLING:** Elementary concepts, sampling by attributes, single and double sampling plans, use of Dodge Roming and Military standard sampling tables, construction and use of O.C. curves, introduction to sampling by variates, continuous sampling plans. **[8 H]**

RELIABILITY: Introduction, failure rate curve, life testing, relationship between constant failure rate, mean life and other failure rates. O.C. curve for stipulated life; Producer and consumer risk in life testing, sampling plans, MIL-STD procedures for failure sequential life testing plans. Reliability study analysis, synthesis of system reliability, design for reliability, measurement of reliability. [9 H]

MAINTENACE ENGINEERING: Machine health monitoring, preventive and predictive maintenance; condition based maintenance; maintenance planning and scheduling; Application of latest techniques like fibre optics, signature analysis, thermography in maintenance engineering; failure analysis of vital components like bearings; seals; gears etc; Maintenance strategies and computer aided maintenance. [8 H]

- 1. Reliability and Maintenance Engineering by RC Mishra
- 2. J. M. Juran& Frank M. Gryna : Quality Planning and Analysis Tata McGraw-Hill

Subject Code:	CS421a	Course Title	Image	
-			Reconstruction	
Contact Hours	L- 3 T- 0 P- 0	Credit	4	
Programme	B.Tech	Semester	VIII	
Pre-requisites	NIL			
Evaluation scheme	Quiz I (15%), Mid term (30%), Quiz II (15%), E	nd term (40%)	
One-dimensional signal processing, Fourier analysis, Line integrals and projections, Fourier slice theorem				
			[08 H]	
Reconstruction algorithms for parallel projections [07 H]				
Reconstruction algorithms for fan beam projections [07 H]				
Reconstruction algorithms for Cone beam projections geometries [10 H]				
Algebraic reconstruction algorithms [05 H]				
Optimization based reconstruction algorithms [07 H]			[07 H]	
Text/Reference books:				
G T Herman, "Image reconstruction from projections", Springer-verlag, 2009				

Subject Code:	CS421c	Course Title	Statistical Methods in		
			Computer Science		
Contact Hours	L- 3 T- 0 P- 0	Credit	4		
Programme	BTech	Semester	VIII		
Pre-requisites	NIL				
Evaluation scheme	Quiz I (10%), Mid-term (20%), Quiz II (10%), End term (40%), Assignments (20%)				
Introduction to the prob	abilistic and statistical teo	chniques used in modern	computer systems. Basics of		
probability and statistica	al estimation. [10 H]				
Graphical models, Mixture models and the EM algorithm, HMM, Kalman Filters, Bayesian Networks and					
Markov Networks, Variable elimination, junction trees and belief propagation [10 H]					
Sampling-based inference, Probabilistic inference, statistical learning, learning Bayesian network,					
learning Markov models. [10 H]					
Decision theory, Markov decision processes. Applications of probabilistic and statistical techniques to					
algorithms, speech/image processing, robotics[12H]					
References:					
1. D. Koller & N. Frie	1. D. Koller & N. Friedman, <i>Probabilistic Graphical Models: Principles and Techniques</i> , MIT Press				
2. Mari , Jean-Franç	2. Mari, Jean-François and Schott, René, Probabilistic and Statistical Methods in Computer				
Science Springer, 2001					

Subject Code:	EC422a	Course Title	Nanophotonics and Plasmonics
Contact Hours	L- 3 T- 0 P- 0	Credit	4
Programme	B.Tech	Semester	VIII
Pre-requisites	NIL		
Evaluation scheme	Quiz I (15%), Midterm (30%), Quiz II (15%), End term (40%)		

Introduction to Photonics: Electromagnetic waves; light; Maxwell equations; Wave equation; Modes, laser sources, semiconductor quantum wells, photo detectors, quantum dots, nanowires, Dielectric optical waveguides, directional coupler, Machzehnder interferometer, Optical microresonators etc. **[6 H]**

Photonic Crystals: Photonic bandgap (PGB). PBG structures, wave propagation, Construction methods, Applications: wave guides and photonic crystals fibres, optical microcavities, Photonic VLSI. **[8 H]**

Nanophotonics in metals: Electromagnetics of Metals, Electromagnetic Wave Propagation, Dielectric function and dispersion, Surface Plasmon polaritons, Single and multilayer systems, Exaction of surface Plasmon, plasmonic waveguides and resonators, localized surface plasmons, Nanoantennas. Metamaterials and Negative Index at Optical Frequencies,

Transmission through apertures and films: Theory of Diffraction by Sub-Wavelength Aperture, Extraordinary Transmission, Directional Emission via Exit Surface Patterning, Localized Surface Plasmons and Light Transmission Through Single Apertures, Emerging Applications of Extraordinary Transmission, Transmission of Light Through a Film Without Apertures. **[10 H] Simulation and Design:** Optical microresonators, guiding bending and splitting of light through

photonic crystals, microcavity based MUX and DEMUX, photonic crystal fiber, plasmonic waveguides and resonators, Nanoantennas, Extraordinary transmission, Bull's eye structures, Metamaterials. **[12 H]**

- 1. Fundamentals and Applications by Stefen A. Maer
- 2. Nanophotonics with Surface Plasmon by Vladimir M. Salaev
- 3. Photonic crystals: Molding the flow of light by J.D. Joannopoulos
- 4. Integrated Photonics: fundamentals by G. Lifante

Subjec	t Code:	EC422b	Course Title	Application of Signal		
				and image Processing		
Contac	ct Hours	L- 3 T- 0 P- 0	Credit	4		
Progra	mme	B.Tech	Semester	VIII		
Pre-re	quisites	NIL				
Evaluation scheme Quiz I (12.5%), Mid term (25%), Quiz II (12.5%), End term (50%)						
ECG: Cardiac electrophysiology, relation of electrocardiogram (ECG) components to cardiac events,						
clinical applications. [6 H]						
Speech Signals: The source-filter model of speech production, spectrographic analysis of speech.						
נס דן Sneech Coding: Analysis-synthesis systems, channel vocoders, linear prediction of sneech, linear, prediction						
vocoders [5 H]						
Imaging Modalities: Survey of major modalities for medical imaging: ultrasound, X-ray, CT, MRI, PET, and						
SPECT. [5 H]						
MRI: Physics and signal processing for magnetic resonance imaging. [5 H] Surgical						
Applications: A survey of surgical applications of medical image processing. Image Segmentation:						
statistical classification, morphological operators, connected components. [5 H] Application of Signal and						
Image Processing in power and control systems and mobile robot using						
Text/Reference books:						
1.	. Oppenheim, A. V., and R. W. Schafer, with J. R. Buck. Discrete-Time Signal Processing, 2nd ed.					
	Upper Saddle Riv	er, NJ: Prentice-Hall, 199	9. ISBN: 9780137549	207.		
2.	Karu, Z. Z. Signal	s and Systems Made Rid	diculously Simple. Hu	untsville, AL: ZiZi Press, 1995. ISBN:		
	9780964375215.					
3.	3. Duda, R., and P. Hart. Pattern Classification and Scene Analysis. New York, NY: John			ysis. New York, NY: John Wiley &		
	Sons, 1973. ISBN:	9780471223610.				
4.	Clifford, G., F. Azuajae, and P. McSharry. Advanced Methods and Tools for ECG Dat			and Tools for ECG Data Analysis.		
	Norwood, MA: Ar	tech House, 2006. ISBN:	9871580539661.			
5.	5. Rabiner, L. R., and R. W. Schafer. Digital Processing of Speech Signals. Upp		ch Signals. Upper Saddle River, NJ:			
	Prentice-Hall, 197	78. ISBN: 9780132136037				
6.	Lim, J. S. Two-Dimensional Signal and Image Processing. Upper Saddle River, NJ: Prentice Hall, 198					
	ISBN: 978013935	3222.				
7.	Gonzalez, R., and	R. E. Woods. Digital Ima	ge Processing. 2nd e	d. Upper Saddle River, NJ:		
	Prentice-Hall, 200	02. ISBN: 9780201180756	•			
Subject Code:	CS422a	Course Title	Natural Language			
--	--	--------------	------------------	--	--	--
			Processing			
Contact Hours	L- 3 T- 0 P- 0	Credit	4			
Programme	B.Tech	Semester	VIII			
Pre-requisites	NIL					
Evaluation scheme	eme Quiz I (10%), Mid-term (20%), Quiz II (10%), End term (40%), Project (20%)					
Basic Text Processing, Regular expression, sentence segmentation, word stemming. [2]						
Language modeling problem, Hidden Markov models, N-gram models, parameter estimation, model						
evaluation, perplexity, smoothing. [5]						
Text classification, Naïve Bayes and multinomial Naïve Bayes, Evaluation, Sentiment Analysis [5] POS						
Tagging problems, Viterbi Algorithm for HMM, NER.[5] The						
parsing problem, CFG and Probabilistic context-free grammars (PCFG), CKY Parsing algorithm, weaknesses						
of PCFGs, Lexicalized PCFG, [5]						
Information Retrieval, Term-Document Incidence Matrices, The Inverted Index, Introducing Ranked						
Retrieval, Term Frequency Weighting, Inverse Document Frequency Weighting (10:16), TF-IDF Weighting.						
			[8]			
Log-linear models, and t	ing, parsing [10]					
Unsupervised and semi-supervised learning in NLP. [2]						
Text/Reference books:						
1. Jurafsky and Martin, Speech and Language Processing 2nd Edition, Prentice Hall						
2. Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language						
Processing, MIT Press. Cambridge, MA: May 1999.						

Subject Code:	CS422b	Course Title	Visual Cryptography		
			& Data Hiding		
Contact Hours	L- 3 T- 0 P- 0	Credit	4		
Programme	B.Tech	Semester	VIII		
Pre-requisites	NIL				
Evaluation scheme	Quiz I (10%), Mid-term (20%), Quiz II (10%), En	d term (40%), Project (20%)		
Introduction, Visual Secret Sharing (VSS), Definition and construction. Naor and Shamir's (k,n) VSS, Proof of					
correctness, Contrast and pixel expansion. Contrast bounds.			[10 H] Visual		
Cryptography for multiple secrets, XOR based Visual Cryptography, Chaotic map based techniques, Colour					
image VSS.	[10 H]				
Data hiding schemes, Characteristics of data hiding schemes: Security, Payload, Imperceptibility, Reversible					
data hiding schemes, Ra	[12 H] Data				
Hiding Applications: Watermarking, Basic of watermarking schemes, Watermarking in images, audios and					
videos.			[10 H]		
Text/Reference books:					
1. M. T. Raggo and C. Hosmer, Data Hiding: Exposing Concealed Data in Multimedia, Operating					
Systems, Mobile Devices and Network Protocols, Elsevier, 2012.					

Subje	ct Code:	CS422c	Course Title	Model Thinking		
Conta	ct Hours	L- 3 T- 0 P- 0	Credit	4		
Progra	imme	B.Tech	Semester	VIII		
Pre-re	quisites	NIL				
Evalua	ition scheme	Quiz I (10%), Mid-term (20%), Quiz II (10%), End term (40%), Assignment (20%)				
Why Model & Segregation/Peer Effects, Aggregation & Decision Models, Thinking Electrons: Modeling						
People & Categorical and Linear Models [10 H]						
Tipping Points & Economic Growth, Diversity and Innovation & Markov Processes, Lyapunov Functions						
& Coordination and Culture [10 H]						
Path Dependence & Networks, Randomness and Random Walks & Colonel Blotto, Prisoners' Dilemma						
and Collective Action & Mechanism Design [12 H]						
Learning Models: Replicator Dynamics & Prediction and the Many Model Thinker [1			hinker [10 H]			
Text/Reference books:						
1.	1. Mikael Krogerus, Roman Tschäppeler, Jenny Piening, Philip Earnhart, The Decision Book - 50 Models					
	for Strategic Thinking, W. W. Norton & Company, 2012					
2.	Alexander Osterv	walder and Yves Pigneur, Business Model Generation: A Handbook for				
	Visionaries, Game Changers, and Challengers, Wiley, 2010.					
3.	Mikael Krogerus	s and Roman Tschäppeler, The Change Book: Fifty models to explain how				
	things happen, P	rofile Books Ltd, Jan 2013				